Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmdvd Structured version   Visualization version   GIF version

Theorem rhmdvd 29618
 Description: A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
rhmdvd.u 𝑈 = (Unit‘𝑆)
rhmdvd.x 𝑋 = (Base‘𝑅)
rhmdvd.d / = (/r𝑆)
rhmdvd.m · = (.r𝑅)
Assertion
Ref Expression
rhmdvd ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → ((𝐹𝐴) / (𝐹𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶))))

Proof of Theorem rhmdvd
StepHypRef Expression
1 simp1 1059 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
2 simp21 1092 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → 𝐴𝑋)
3 simp23 1094 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → 𝐶𝑋)
4 rhmdvd.x . . . . 5 𝑋 = (Base‘𝑅)
5 rhmdvd.m . . . . 5 · = (.r𝑅)
6 eqid 2621 . . . . 5 (.r𝑆) = (.r𝑆)
74, 5, 6rhmmul 18651 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐶𝑋) → (𝐹‘(𝐴 · 𝐶)) = ((𝐹𝐴)(.r𝑆)(𝐹𝐶)))
81, 2, 3, 7syl3anc 1323 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (𝐹‘(𝐴 · 𝐶)) = ((𝐹𝐴)(.r𝑆)(𝐹𝐶)))
9 simp22 1093 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → 𝐵𝑋)
104, 5, 6rhmmul 18651 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 · 𝐶)) = ((𝐹𝐵)(.r𝑆)(𝐹𝐶)))
111, 9, 3, 10syl3anc 1323 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (𝐹‘(𝐵 · 𝐶)) = ((𝐹𝐵)(.r𝑆)(𝐹𝐶)))
128, 11oveq12d 6625 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶))) = (((𝐹𝐴)(.r𝑆)(𝐹𝐶)) / ((𝐹𝐵)(.r𝑆)(𝐹𝐶))))
13 rhmrcl2 18644 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
14133ad2ant1 1080 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → 𝑆 ∈ Ring)
15 eqid 2621 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
164, 15rhmf 18650 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝑋⟶(Base‘𝑆))
17163ad2ant1 1080 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → 𝐹:𝑋⟶(Base‘𝑆))
1817, 2ffvelrnd 6318 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (𝐹𝐴) ∈ (Base‘𝑆))
19 simp3l 1087 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (𝐹𝐵) ∈ 𝑈)
20 simp3r 1088 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (𝐹𝐶) ∈ 𝑈)
21 rhmdvd.u . . . 4 𝑈 = (Unit‘𝑆)
22 rhmdvd.d . . . 4 / = (/r𝑆)
2315, 21, 22, 6dvrcan5 29590 . . 3 ((𝑆 ∈ Ring ∧ ((𝐹𝐴) ∈ (Base‘𝑆) ∧ (𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (((𝐹𝐴)(.r𝑆)(𝐹𝐶)) / ((𝐹𝐵)(.r𝑆)(𝐹𝐶))) = ((𝐹𝐴) / (𝐹𝐵)))
2414, 18, 19, 20, 23syl13anc 1325 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (((𝐹𝐴)(.r𝑆)(𝐹𝐶)) / ((𝐹𝐵)(.r𝑆)(𝐹𝐶))) = ((𝐹𝐴) / (𝐹𝐵)))
2512, 24eqtr2d 2656 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → ((𝐹𝐴) / (𝐹𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ⟶wf 5845  ‘cfv 5849  (class class class)co 6607  Basecbs 15784  .rcmulr 15866  Ringcrg 18471  Unitcui 18563  /rcdvr 18606   RingHom crh 18636 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-tpos 7300  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-0g 16026  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-mhm 17259  df-grp 17349  df-minusg 17350  df-ghm 17582  df-mgp 18414  df-ur 18426  df-ring 18473  df-oppr 18547  df-dvdsr 18565  df-unit 18566  df-invr 18596  df-dvr 18607  df-rnghom 18639 This theorem is referenced by:  qqhval2lem  29819  qqhghm  29826  qqhrhm  29827
 Copyright terms: Public domain W3C validator