Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmunitinv Structured version   Visualization version   GIF version

Theorem rhmunitinv 29619
Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
rhmunitinv ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))

Proof of Theorem rhmunitinv
StepHypRef Expression
1 rhmrcl1 18643 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
2 eqid 2621 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
3 eqid 2621 . . . . . . 7 (invr𝑅) = (invr𝑅)
4 eqid 2621 . . . . . . 7 (.r𝑅) = (.r𝑅)
5 eqid 2621 . . . . . . 7 (1r𝑅) = (1r𝑅)
62, 3, 4, 5unitlinv 18601 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝐴)(.r𝑅)𝐴) = (1r𝑅))
71, 6sylan 488 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝐴)(.r𝑅)𝐴) = (1r𝑅))
87fveq2d 6154 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = (𝐹‘(1r𝑅)))
9 simpl 473 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
10 eqid 2621 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
1110, 2unitss 18584 . . . . . 6 (Unit‘𝑅) ⊆ (Base‘𝑅)
122, 3unitinvcl 18598 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅))
131, 12sylan 488 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅))
1411, 13sseldi 3582 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Base‘𝑅))
15 simpr 477 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
1611, 15sseldi 3582 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
17 eqid 2621 . . . . . 6 (.r𝑆) = (.r𝑆)
1810, 4, 17rhmmul 18651 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝐴) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Base‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)))
199, 14, 16, 18syl3anc 1323 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)))
20 eqid 2621 . . . . . 6 (1r𝑆) = (1r𝑆)
215, 20rhm1 18654 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
2221adantr 481 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(1r𝑅)) = (1r𝑆))
238, 19, 223eqtr3d 2663 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
24 rhmrcl2 18644 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
2524adantr 481 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ Ring)
26 elrhmunit 29617 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))
27 eqid 2621 . . . . 5 (Unit‘𝑆) = (Unit‘𝑆)
28 eqid 2621 . . . . 5 (invr𝑆) = (invr𝑆)
2927, 28, 17, 20unitlinv 18601 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹𝐴) ∈ (Unit‘𝑆)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
3025, 26, 29syl2anc 692 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
3123, 30eqtr4d 2658 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)))
32 eqid 2621 . . . . . 6 ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) = ((mulGrp‘𝑆) ↾s (Unit‘𝑆))
3327, 32unitgrp 18591 . . . . 5 (𝑆 ∈ Ring → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
3424, 33syl 17 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
3534adantr 481 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
36 elrhmunit 29617 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Unit‘𝑆))
3713, 36syldan 487 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Unit‘𝑆))
3827, 28unitinvcl 18598 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹𝐴) ∈ (Unit‘𝑆)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Unit‘𝑆))
3925, 26, 38syl2anc 692 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Unit‘𝑆))
4027, 32unitgrpbas 18590 . . . 4 (Unit‘𝑆) = (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
41 fvex 6160 . . . . 5 (Unit‘𝑆) ∈ V
42 eqid 2621 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
4342, 17mgpplusg 18417 . . . . . 6 (.r𝑆) = (+g‘(mulGrp‘𝑆))
4432, 43ressplusg 15917 . . . . 5 ((Unit‘𝑆) ∈ V → (.r𝑆) = (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
4541, 44ax-mp 5 . . . 4 (.r𝑆) = (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
4640, 45grprcan 17379 . . 3 ((((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp ∧ ((𝐹‘((invr𝑅)‘𝐴)) ∈ (Unit‘𝑆) ∧ ((invr𝑆)‘(𝐹𝐴)) ∈ (Unit‘𝑆) ∧ (𝐹𝐴) ∈ (Unit‘𝑆))) → (((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
4735, 37, 39, 26, 46syl13anc 1325 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
4831, 47mpbid 222 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  cfv 5849  (class class class)co 6607  Basecbs 15784  s cress 15785  +gcplusg 15865  .rcmulr 15866  Grpcgrp 17346  mulGrpcmgp 18413  1rcur 18425  Ringcrg 18471  Unitcui 18563  invrcinvr 18595   RingHom crh 18636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-tpos 7300  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-0g 16026  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-mhm 17259  df-grp 17349  df-minusg 17350  df-ghm 17582  df-mgp 18414  df-ur 18426  df-ring 18473  df-oppr 18547  df-dvdsr 18565  df-unit 18566  df-invr 18596  df-rnghom 18639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator