![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnghmsubcsetclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for rnghmsubcsetc 42302. (Contributed by AV, 9-Mar-2020.) |
Ref | Expression |
---|---|
rnghmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
rnghmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rnghmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
rnghmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rnghmsubcsetclem1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghmsubcsetc.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) | |
2 | 1 | eleq2d 2716 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Rng ∩ 𝑈))) |
3 | elin 3829 | . . . . . 6 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) ↔ (𝑥 ∈ Rng ∧ 𝑥 ∈ 𝑈)) | |
4 | 3 | simplbi 475 | . . . . 5 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥 ∈ Rng) |
5 | 2, 4 | syl6bi 243 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ Rng)) |
6 | 5 | imp 444 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Rng) |
7 | eqid 2651 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
8 | 7 | idrnghm 42233 | . . 3 ⊢ (𝑥 ∈ Rng → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)) |
9 | 6, 8 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHomo 𝑥)) |
10 | rnghmsubcsetc.c | . . 3 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
11 | eqid 2651 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
12 | rnghmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
14 | 3 | simprbi 479 | . . . . 5 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥 ∈ 𝑈) |
15 | 2, 14 | syl6bi 243 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
16 | 15 | imp 444 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
17 | 10, 11, 13, 16 | estrcid 16821 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) = ( I ↾ (Base‘𝑥))) |
18 | rnghmsubcsetc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) | |
19 | 18 | oveqdr 6714 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑥)) |
20 | eqid 2651 | . . . . . . . 8 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
21 | eqid 2651 | . . . . . . . 8 ⊢ (Base‘(RngCat‘𝑈)) = (Base‘(RngCat‘𝑈)) | |
22 | eqid 2651 | . . . . . . . 8 ⊢ (Hom ‘(RngCat‘𝑈)) = (Hom ‘(RngCat‘𝑈)) | |
23 | 20, 21, 12, 22 | rngchomfval 42291 | . . . . . . 7 ⊢ (𝜑 → (Hom ‘(RngCat‘𝑈)) = ( RngHomo ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))))) |
24 | 20, 21, 12 | rngcbas 42290 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
25 | incom 3838 | . . . . . . . . . . . 12 ⊢ (Rng ∩ 𝑈) = (𝑈 ∩ Rng) | |
26 | 1, 25 | syl6eq 2701 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
27 | 26 | eqcomd 2657 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑈 ∩ Rng) = 𝐵) |
28 | 24, 27 | eqtrd 2685 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = 𝐵) |
29 | 28 | sqxpeqd 5175 | . . . . . . . 8 ⊢ (𝜑 → ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))) = (𝐵 × 𝐵)) |
30 | 29 | reseq2d 5428 | . . . . . . 7 ⊢ (𝜑 → ( RngHomo ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈)))) = ( RngHomo ↾ (𝐵 × 𝐵))) |
31 | 23, 30 | eqtrd 2685 | . . . . . 6 ⊢ (𝜑 → (Hom ‘(RngCat‘𝑈)) = ( RngHomo ↾ (𝐵 × 𝐵))) |
32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Hom ‘(RngCat‘𝑈)) = ( RngHomo ↾ (𝐵 × 𝐵))) |
33 | 32 | eqcomd 2657 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( RngHomo ↾ (𝐵 × 𝐵)) = (Hom ‘(RngCat‘𝑈))) |
34 | 33 | oveqd 6707 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑥) = (𝑥(Hom ‘(RngCat‘𝑈))𝑥)) |
35 | 26 | eleq2d 2716 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Rng))) |
36 | 35 | biimpa 500 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑈 ∩ Rng)) |
37 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
38 | 36, 37 | eleqtrrd 2733 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘(RngCat‘𝑈))) |
39 | 20, 21, 13, 22, 38, 38 | rngchom 42292 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘(RngCat‘𝑈))𝑥) = (𝑥 RngHomo 𝑥)) |
40 | 19, 34, 39 | 3eqtrd 2689 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥 RngHomo 𝑥)) |
41 | 9, 17, 40 | 3eltr4d 2745 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 I cid 5052 × cxp 5141 ↾ cres 5145 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 Hom chom 15999 Idccid 16373 ExtStrCatcestrc 16809 Rngcrng 42199 RngHomo crngh 42210 RngCatcrngc 42282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-hom 16013 df-cco 16014 df-cat 16376 df-cid 16377 df-resc 16518 df-estrc 16810 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-ghm 17705 df-abl 18242 df-mgp 18536 df-mgmhm 42104 df-rng0 42200 df-rnghomo 42212 df-rngc 42284 |
This theorem is referenced by: rnghmsubcsetc 42302 |
Copyright terms: Public domain | W3C validator |