Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmsubcsetclem2 Structured version   Visualization version   GIF version

Theorem rnghmsubcsetclem2 41261
Description: Lemma 2 for rnghmsubcsetc 41262. (Contributed by AV, 9-Mar-2020.)
Hypotheses
Ref Expression
rnghmsubcsetc.c 𝐶 = (ExtStrCat‘𝑈)
rnghmsubcsetc.u (𝜑𝑈𝑉)
rnghmsubcsetc.b (𝜑𝐵 = (Rng ∩ 𝑈))
rnghmsubcsetc.h (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rnghmsubcsetclem2 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Distinct variable groups:   𝐵,𝑓,𝑔,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦,𝑧   𝑥,𝑈,𝑦   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑈(𝑧,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem rnghmsubcsetclem2
StepHypRef Expression
1 simpl 473 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝜑)
21adantr 481 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝜑)
32adantr 481 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝜑)
4 simpr 477 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦𝐵𝑧𝐵))
54adantr 481 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝐵𝑧𝐵))
6 simpr 477 . . . . . . 7 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦𝐻𝑧))
76adantl 482 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧))
8 rnghmsubcsetc.h . . . . . . 7 (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
98rnghmresel 41249 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHomo 𝑧))
103, 5, 7, 9syl3anc 1323 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RngHomo 𝑧))
11 simpr 477 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥𝐵)
12 simpl 473 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → 𝑦𝐵)
1311, 12anim12i 589 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐵𝑦𝐵))
1413adantr 481 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐵𝑦𝐵))
15 simprl 793 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦))
168rnghmresel 41249 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RngHomo 𝑦))
173, 14, 15, 16syl3anc 1323 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RngHomo 𝑦))
18 rnghmco 41192 . . . . 5 ((𝑔 ∈ (𝑦 RngHomo 𝑧) ∧ 𝑓 ∈ (𝑥 RngHomo 𝑦)) → (𝑔𝑓) ∈ (𝑥 RngHomo 𝑧))
1910, 17, 18syl2anc 692 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔𝑓) ∈ (𝑥 RngHomo 𝑧))
20 rnghmsubcsetc.c . . . . 5 𝐶 = (ExtStrCat‘𝑈)
21 rnghmsubcsetc.u . . . . . 6 (𝜑𝑈𝑉)
2221ad3antrrr 765 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈𝑉)
23 eqid 2621 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
24 rnghmsubcsetc.b . . . . . . . . . 10 (𝜑𝐵 = (Rng ∩ 𝑈))
2524eleq2d 2684 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥 ∈ (Rng ∩ 𝑈)))
26 elinel2 3778 . . . . . . . . 9 (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥𝑈)
2725, 26syl6bi 243 . . . . . . . 8 (𝜑 → (𝑥𝐵𝑥𝑈))
2827imp 445 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝑈)
2928adantr 481 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑥𝑈)
3029adantr 481 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥𝑈)
3124eleq2d 2684 . . . . . . . . . . 11 (𝜑 → (𝑦𝐵𝑦 ∈ (Rng ∩ 𝑈)))
32 elinel2 3778 . . . . . . . . . . 11 (𝑦 ∈ (Rng ∩ 𝑈) → 𝑦𝑈)
3331, 32syl6bi 243 . . . . . . . . . 10 (𝜑 → (𝑦𝐵𝑦𝑈))
3433adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑦𝐵𝑦𝑈))
3534com12 32 . . . . . . . 8 (𝑦𝐵 → ((𝜑𝑥𝐵) → 𝑦𝑈))
3635adantr 481 . . . . . . 7 ((𝑦𝐵𝑧𝐵) → ((𝜑𝑥𝐵) → 𝑦𝑈))
3736impcom 446 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝑈)
3837adantr 481 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦𝑈)
3924eleq2d 2684 . . . . . . . . . 10 (𝜑 → (𝑧𝐵𝑧 ∈ (Rng ∩ 𝑈)))
40 elinel2 3778 . . . . . . . . . 10 (𝑧 ∈ (Rng ∩ 𝑈) → 𝑧𝑈)
4139, 40syl6bi 243 . . . . . . . . 9 (𝜑 → (𝑧𝐵𝑧𝑈))
4241adantr 481 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑧𝐵𝑧𝑈))
4342adantld 483 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → 𝑧𝑈))
4443imp 445 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝑈)
4544adantr 481 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧𝑈)
46 eqid 2621 . . . . 5 (Base‘𝑥) = (Base‘𝑥)
47 eqid 2621 . . . . 5 (Base‘𝑦) = (Base‘𝑦)
48 eqid 2621 . . . . 5 (Base‘𝑧) = (Base‘𝑧)
49 simprl 793 . . . . . . . . . . . . . . 15 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → 𝜑)
5049adantr 481 . . . . . . . . . . . . . 14 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝜑)
5111anim1i 591 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝐵𝑦𝐵))
5251ancoms 469 . . . . . . . . . . . . . . 15 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → (𝑥𝐵𝑦𝐵))
5352adantr 481 . . . . . . . . . . . . . 14 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → (𝑥𝐵𝑦𝐵))
54 simpr 477 . . . . . . . . . . . . . 14 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥𝐻𝑦))
5550, 53, 54, 16syl3anc 1323 . . . . . . . . . . . . 13 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RngHomo 𝑦))
5646, 47rnghmf 41184 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑥 RngHomo 𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
5755, 56syl 17 . . . . . . . . . . . 12 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
5857ex 450 . . . . . . . . . . 11 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
5958ex 450 . . . . . . . . . 10 (𝑦𝐵 → ((𝜑𝑥𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))))
6059adantr 481 . . . . . . . . 9 ((𝑦𝐵𝑧𝐵) → ((𝜑𝑥𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))))
6160impcom 446 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
6261com12 32 . . . . . . 7 (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
6362adantr 481 . . . . . 6 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
6463impcom 446 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
6593expa 1262 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHomo 𝑧))
6647, 48rnghmf 41184 . . . . . . . . . 10 (𝑔 ∈ (𝑦 RngHomo 𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6765, 66syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6867ex 450 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
6968adantlr 750 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
7069adantld 483 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
7170imp 445 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
7220, 22, 23, 30, 38, 45, 46, 47, 48, 64, 71estrcco 16691 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔𝑓))
738adantr 481 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
7473oveqdr 6628 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐻𝑧) = (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑧))
75 ovres 6753 . . . . . . 7 ((𝑥𝐵𝑧𝐵) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RngHomo 𝑧))
7675ad2ant2l 781 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RngHomo 𝑧))
7774, 76eqtrd 2655 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐻𝑧) = (𝑥 RngHomo 𝑧))
7877adantr 481 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RngHomo 𝑧))
7919, 72, 783eltr4d 2713 . . 3 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
8079ralrimivva 2965 . 2 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
8180ralrimivva 2965 1 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  cin 3554  cop 4154   × cxp 5072  cres 5076  ccom 5078  wf 5843  cfv 5847  (class class class)co 6604  Basecbs 15781  compcco 15874  ExtStrCatcestrc 16683  Rngcrng 41159   RngHomo crngh 41170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-hom 15887  df-cco 15888  df-0g 16023  df-estrc 16684  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-ghm 17579  df-abl 18117  df-mgp 18411  df-mgmhm 41064  df-rng0 41160  df-rnghomo 41172
This theorem is referenced by:  rnghmsubcsetc  41262
  Copyright terms: Public domain W3C validator