MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngo2times Structured version   Visualization version   GIF version

Theorem rngo2times 18345
Description: A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unit with itself. (Contributed by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringadd2.b 𝐵 = (Base‘𝑅)
ringadd2.p + = (+g𝑅)
ringadd2.t · = (.r𝑅)
rngo2times.u 1 = (1r𝑅)
Assertion
Ref Expression
rngo2times ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴))

Proof of Theorem rngo2times
StepHypRef Expression
1 ringadd2.b . . . . 5 𝐵 = (Base‘𝑅)
2 ringadd2.t . . . . 5 · = (.r𝑅)
3 rngo2times.u . . . . 5 1 = (1r𝑅)
41, 2, 3ringlidm 18340 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → ( 1 · 𝐴) = 𝐴)
54eqcomd 2615 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → 𝐴 = ( 1 · 𝐴))
65, 5oveq12d 6545 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝐴 + 𝐴) = (( 1 · 𝐴) + ( 1 · 𝐴)))
7 simpl 471 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → 𝑅 ∈ Ring)
81, 3ringidcl 18337 . . . 4 (𝑅 ∈ Ring → 1𝐵)
98adantr 479 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → 1𝐵)
10 simpr 475 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → 𝐴𝐵)
11 ringadd2.p . . . 4 + = (+g𝑅)
121, 11, 2ringdir 18336 . . 3 ((𝑅 ∈ Ring ∧ ( 1𝐵1𝐵𝐴𝐵)) → (( 1 + 1 ) · 𝐴) = (( 1 · 𝐴) + ( 1 · 𝐴)))
137, 9, 9, 10, 12syl13anc 1319 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (( 1 + 1 ) · 𝐴) = (( 1 · 𝐴) + ( 1 · 𝐴)))
146, 13eqtr4d 2646 1 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  cfv 5790  (class class class)co 6527  Basecbs 15641  +gcplusg 15714  .rcmulr 15715  1rcur 18270  Ringcrg 18316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-plusg 15727  df-0g 15871  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-mgp 18259  df-ur 18271  df-ring 18318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator