Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclfu2 Structured version   Visualization version   GIF version

Theorem sigaclfu2 31380
Description: A sigma-algebra is closed under finite union - indexing on (1..^𝑁). (Contributed by Thierry Arnoux, 28-Dec-2016.)
Assertion
Ref Expression
sigaclfu2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → 𝑘 ∈ (1..^𝑁)𝐴𝑆)
Distinct variable groups:   𝑆,𝑘   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sigaclfu2
StepHypRef Expression
1 iunxun 5016 . . . 4 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ( 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅))
2 fzossnn 13087 . . . . . 6 (1..^𝑁) ⊆ ℕ
3 undif 4430 . . . . . 6 ((1..^𝑁) ⊆ ℕ ↔ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ)
42, 3mpbi 232 . . . . 5 ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ
5 iuneq1 4935 . . . . 5 (((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ → 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅))
64, 5ax-mp 5 . . . 4 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)
7 iftrue 4473 . . . . . 6 (𝑘 ∈ (1..^𝑁) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝐴)
87iuneq2i 4940 . . . . 5 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ (1..^𝑁)𝐴
9 eldifn 4104 . . . . . . . 8 (𝑘 ∈ (ℕ ∖ (1..^𝑁)) → ¬ 𝑘 ∈ (1..^𝑁))
109iffalsed 4478 . . . . . . 7 (𝑘 ∈ (ℕ ∖ (1..^𝑁)) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∅)
1110iuneq2i 4940 . . . . . 6 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ (ℕ ∖ (1..^𝑁))∅
12 iun0 4985 . . . . . 6 𝑘 ∈ (ℕ ∖ (1..^𝑁))∅ = ∅
1311, 12eqtri 2844 . . . . 5 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∅
148, 13uneq12i 4137 . . . 4 ( 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)) = ( 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅)
151, 6, 143eqtr3i 2852 . . 3 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ( 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅)
16 un0 4344 . . 3 ( 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅) = 𝑘 ∈ (1..^𝑁)𝐴
1715, 16eqtri 2844 . 2 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ (1..^𝑁)𝐴
18 0elsiga 31373 . . . 4 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
19 simpr 487 . . . . . . . . 9 ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → 𝑘 ∈ (1..^𝑁))
20 simpllr 774 . . . . . . . . 9 ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → (𝑘 ∈ (1..^𝑁) → 𝐴𝑆))
2119, 20mpd 15 . . . . . . . 8 ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → 𝐴𝑆)
22 simplll 773 . . . . . . . 8 ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) ∧ ¬ 𝑘 ∈ (1..^𝑁)) → ∅ ∈ 𝑆)
2321, 22ifclda 4501 . . . . . . 7 (((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
2423exp31 422 . . . . . 6 (∅ ∈ 𝑆 → ((𝑘 ∈ (1..^𝑁) → 𝐴𝑆) → (𝑘 ∈ ℕ → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)))
2524ralimdv2 3176 . . . . 5 (∅ ∈ 𝑆 → (∀𝑘 ∈ (1..^𝑁)𝐴𝑆 → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆))
2625imp 409 . . . 4 ((∅ ∈ 𝑆 ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
2718, 26sylan 582 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
28 sigaclcu2 31379 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) → 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
2927, 28syldan 593 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
3017, 29eqeltrrid 2918 1 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → 𝑘 ∈ (1..^𝑁)𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  cdif 3933  cun 3934  wss 3936  c0 4291  ifcif 4467   cuni 4838   ciun 4919  ran crn 5556  (class class class)co 7156  1c1 10538  cn 11638  ..^cfzo 13034  sigAlgebracsiga 31367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-siga 31368
This theorem is referenced by:  sigaclcu3  31381  measiuns  31476  measiun  31477  meascnbl  31478
  Copyright terms: Public domain W3C validator