MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srglmhm Structured version   Visualization version   GIF version

Theorem srglmhm 18467
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringlghm 18536. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b 𝐵 = (Base‘𝑅)
srglmhm.t · = (.r𝑅)
Assertion
Ref Expression
srglmhm ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·

Proof of Theorem srglmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 18441 . . . 4 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
21, 1jca 554 . . 3 (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
32adantr 481 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
4 srglmhm.b . . . . . 6 𝐵 = (Base‘𝑅)
5 srglmhm.t . . . . . 6 · = (.r𝑅)
64, 5srgcl 18444 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
763expa 1262 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
8 eqid 2621 . . . 4 (𝑥𝐵 ↦ (𝑋 · 𝑥)) = (𝑥𝐵 ↦ (𝑋 · 𝑥))
97, 8fmptd 6346 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵)
10 3anass 1040 . . . . . . 7 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
11 eqid 2621 . . . . . . . 8 (+g𝑅) = (+g𝑅)
124, 11, 5srgdi 18448 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑎𝐵𝑏𝐵)) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
1310, 12sylan2br 493 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵))) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
1413anassrs 679 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
154, 11srgacl 18456 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
16153expb 1263 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1716adantlr 750 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
18 oveq2 6618 . . . . . . 7 (𝑥 = (𝑎(+g𝑅)𝑏) → (𝑋 · 𝑥) = (𝑋 · (𝑎(+g𝑅)𝑏)))
19 ovex 6638 . . . . . . 7 (𝑋 · (𝑎(+g𝑅)𝑏)) ∈ V
2018, 8, 19fvmpt 6244 . . . . . 6 ((𝑎(+g𝑅)𝑏) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (𝑋 · (𝑎(+g𝑅)𝑏)))
2117, 20syl 17 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (𝑋 · (𝑎(+g𝑅)𝑏)))
22 oveq2 6618 . . . . . . . 8 (𝑥 = 𝑎 → (𝑋 · 𝑥) = (𝑋 · 𝑎))
23 ovex 6638 . . . . . . . 8 (𝑋 · 𝑎) ∈ V
2422, 8, 23fvmpt 6244 . . . . . . 7 (𝑎𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎) = (𝑋 · 𝑎))
25 oveq2 6618 . . . . . . . 8 (𝑥 = 𝑏 → (𝑋 · 𝑥) = (𝑋 · 𝑏))
26 ovex 6638 . . . . . . . 8 (𝑋 · 𝑏) ∈ V
2725, 8, 26fvmpt 6244 . . . . . . 7 (𝑏𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏) = (𝑋 · 𝑏))
2824, 27oveqan12d 6629 . . . . . 6 ((𝑎𝐵𝑏𝐵) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
2928adantl 482 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
3014, 21, 293eqtr4d 2665 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)))
3130ralrimivva 2966 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)))
32 eqid 2621 . . . . . . 7 (0g𝑅) = (0g𝑅)
334, 32srg0cl 18451 . . . . . 6 (𝑅 ∈ SRing → (0g𝑅) ∈ 𝐵)
3433adantr 481 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (0g𝑅) ∈ 𝐵)
35 oveq2 6618 . . . . . 6 (𝑥 = (0g𝑅) → (𝑋 · 𝑥) = (𝑋 · (0g𝑅)))
36 ovex 6638 . . . . . 6 (𝑋 · (0g𝑅)) ∈ V
3735, 8, 36fvmpt 6244 . . . . 5 ((0g𝑅) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (𝑋 · (0g𝑅)))
3834, 37syl 17 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (𝑋 · (0g𝑅)))
394, 5, 32srgrz 18458 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
4038, 39eqtrd 2655 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅))
419, 31, 403jca 1240 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅)))
424, 4, 11, 11, 32, 32ismhm 17269 . 2 ((𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅))))
433, 41, 42sylanbrc 697 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  cmpt 4678  wf 5848  cfv 5852  (class class class)co 6610  Basecbs 15792  +gcplusg 15873  .rcmulr 15874  0gc0g 16032  Mndcmnd 17226   MndHom cmhm 17265  SRingcsrg 18437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-plusg 15886  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-mhm 17267  df-cmn 18127  df-mgp 18422  df-srg 18438
This theorem is referenced by:  sgsummulcl  18470
  Copyright terms: Public domain W3C validator