MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgrmhm Structured version   Visualization version   GIF version

Theorem srgrmhm 19286
Description: Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringrghm 19355. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b 𝐵 = (Base‘𝑅)
srglmhm.t · = (.r𝑅)
Assertion
Ref Expression
srgrmhm ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·

Proof of Theorem srgrmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 19259 . . . 4 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
21, 1jca 514 . . 3 (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
32adantr 483 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
4 srglmhm.b . . . . . . 7 𝐵 = (Base‘𝑅)
5 srglmhm.t . . . . . . 7 · = (.r𝑅)
64, 5srgcl 19262 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝑥𝐵𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
763com23 1122 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
873expa 1114 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
98fmpttd 6879 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵)
10 3anrot 1096 . . . . . . . 8 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑎𝐵𝑏𝐵𝑋𝐵))
11 3anass 1091 . . . . . . . 8 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
1210, 11bitr3i 279 . . . . . . 7 ((𝑎𝐵𝑏𝐵𝑋𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
13 eqid 2821 . . . . . . . 8 (+g𝑅) = (+g𝑅)
144, 13, 5srgdir 19267 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵𝑋𝐵)) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
1512, 14sylan2br 596 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵))) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
1615anassrs 470 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(+g𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
174, 13srgacl 19274 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
18173expb 1116 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1918adantlr 713 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
20 oveq1 7163 . . . . . . 7 (𝑥 = (𝑎(+g𝑅)𝑏) → (𝑥 · 𝑋) = ((𝑎(+g𝑅)𝑏) · 𝑋))
21 eqid 2821 . . . . . . 7 (𝑥𝐵 ↦ (𝑥 · 𝑋)) = (𝑥𝐵 ↦ (𝑥 · 𝑋))
22 ovex 7189 . . . . . . 7 ((𝑎(+g𝑅)𝑏) · 𝑋) ∈ V
2320, 21, 22fvmpt 6768 . . . . . 6 ((𝑎(+g𝑅)𝑏) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = ((𝑎(+g𝑅)𝑏) · 𝑋))
2419, 23syl 17 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = ((𝑎(+g𝑅)𝑏) · 𝑋))
25 oveq1 7163 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 · 𝑋) = (𝑎 · 𝑋))
26 ovex 7189 . . . . . . . 8 (𝑎 · 𝑋) ∈ V
2725, 21, 26fvmpt 6768 . . . . . . 7 (𝑎𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎) = (𝑎 · 𝑋))
28 oveq1 7163 . . . . . . . 8 (𝑥 = 𝑏 → (𝑥 · 𝑋) = (𝑏 · 𝑋))
29 ovex 7189 . . . . . . . 8 (𝑏 · 𝑋) ∈ V
3028, 21, 29fvmpt 6768 . . . . . . 7 (𝑏𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏) = (𝑏 · 𝑋))
3127, 30oveqan12d 7175 . . . . . 6 ((𝑎𝐵𝑏𝐵) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
3231adantl 484 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g𝑅)(𝑏 · 𝑋)))
3316, 24, 323eqtr4d 2866 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)))
3433ralrimivva 3191 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)))
35 eqid 2821 . . . . . . 7 (0g𝑅) = (0g𝑅)
364, 35srg0cl 19269 . . . . . 6 (𝑅 ∈ SRing → (0g𝑅) ∈ 𝐵)
3736adantr 483 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (0g𝑅) ∈ 𝐵)
38 oveq1 7163 . . . . . 6 (𝑥 = (0g𝑅) → (𝑥 · 𝑋) = ((0g𝑅) · 𝑋))
39 ovex 7189 . . . . . 6 ((0g𝑅) · 𝑋) ∈ V
4038, 21, 39fvmpt 6768 . . . . 5 ((0g𝑅) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = ((0g𝑅) · 𝑋))
4137, 40syl 17 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = ((0g𝑅) · 𝑋))
424, 5, 35srglz 19277 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((0g𝑅) · 𝑋) = (0g𝑅))
4341, 42eqtrd 2856 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅))
449, 34, 433jca 1124 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅)))
454, 4, 13, 13, 35, 35ismhm 17958 . 2 ((𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(0g𝑅)) = (0g𝑅))))
463, 44, 45sylanbrc 585 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  0gc0g 16713  Mndcmnd 17911   MndHom cmhm 17954  SRingcsrg 19255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-cmn 18908  df-mgp 19240  df-srg 19256
This theorem is referenced by:  srgsummulcr  19287
  Copyright terms: Public domain W3C validator