Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem40 Structured version   Visualization version   GIF version

Theorem stoweidlem40 42345
Description: This lemma proves that qn is in the subalgebra, as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90. Q is used to represent qn in the paper, N is used to represent n in the paper, and M is used to represent k^n in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem40.1 𝑡𝑃
stoweidlem40.2 𝑡𝜑
stoweidlem40.3 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑𝑀))
stoweidlem40.4 𝐹 = (𝑡𝑇 ↦ (1 − ((𝑃𝑡)↑𝑁)))
stoweidlem40.5 𝐺 = (𝑡𝑇 ↦ 1)
stoweidlem40.6 𝐻 = (𝑡𝑇 ↦ ((𝑃𝑡)↑𝑁))
stoweidlem40.7 (𝜑𝑃𝐴)
stoweidlem40.8 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem40.9 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem40.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem40.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem40.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem40.13 (𝜑𝑁 ∈ ℕ)
stoweidlem40.14 (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
stoweidlem40 (𝜑𝑄𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝑓,𝐻,𝑔   𝑃,𝑓,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑥,𝑡,𝐴   𝑡,𝑀   𝑡,𝑁   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝑃(𝑥,𝑡)   𝑄(𝑥,𝑡,𝑓,𝑔)   𝐹(𝑥,𝑡)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑡)   𝑀(𝑥,𝑓,𝑔)   𝑁(𝑥,𝑓,𝑔)

Proof of Theorem stoweidlem40
StepHypRef Expression
1 stoweidlem40.3 . . 3 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑𝑀))
2 stoweidlem40.2 . . . 4 𝑡𝜑
3 simpr 487 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑡𝑇)
4 1red 10642 . . . . . . . 8 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
5 stoweidlem40.8 . . . . . . . . . 10 (𝜑𝑃:𝑇⟶ℝ)
65ffvelrnda 6851 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝑃𝑡) ∈ ℝ)
7 stoweidlem40.13 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
87nnnn0d 11956 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
98adantr 483 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑁 ∈ ℕ0)
106, 9reexpcld 13528 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) ∈ ℝ)
114, 10resubcld 11068 . . . . . . 7 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ)
12 stoweidlem40.4 . . . . . . . 8 𝐹 = (𝑡𝑇 ↦ (1 − ((𝑃𝑡)↑𝑁)))
1312fvmpt2 6779 . . . . . . 7 ((𝑡𝑇 ∧ (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ) → (𝐹𝑡) = (1 − ((𝑃𝑡)↑𝑁)))
143, 11, 13syl2anc 586 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) = (1 − ((𝑃𝑡)↑𝑁)))
1514eqcomd 2827 . . . . 5 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) = (𝐹𝑡))
1615oveq1d 7171 . . . 4 ((𝜑𝑡𝑇) → ((1 − ((𝑃𝑡)↑𝑁))↑𝑀) = ((𝐹𝑡)↑𝑀))
172, 16mpteq2da 5160 . . 3 (𝜑 → (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑𝑀)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑀)))
181, 17syl5eq 2868 . 2 (𝜑𝑄 = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑀)))
19 nfmpt1 5164 . . . 4 𝑡(𝑡𝑇 ↦ (1 − ((𝑃𝑡)↑𝑁)))
2012, 19nfcxfr 2975 . . 3 𝑡𝐹
21 stoweidlem40.9 . . 3 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
22 stoweidlem40.11 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
23 stoweidlem40.12 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
24 1re 10641 . . . . . . . . . 10 1 ∈ ℝ
25 stoweidlem40.5 . . . . . . . . . . 11 𝐺 = (𝑡𝑇 ↦ 1)
2625fvmpt2 6779 . . . . . . . . . 10 ((𝑡𝑇 ∧ 1 ∈ ℝ) → (𝐺𝑡) = 1)
2724, 26mpan2 689 . . . . . . . . 9 (𝑡𝑇 → (𝐺𝑡) = 1)
2827eqcomd 2827 . . . . . . . 8 (𝑡𝑇 → 1 = (𝐺𝑡))
2928adantl 484 . . . . . . 7 ((𝜑𝑡𝑇) → 1 = (𝐺𝑡))
30 stoweidlem40.6 . . . . . . . . . 10 𝐻 = (𝑡𝑇 ↦ ((𝑃𝑡)↑𝑁))
3130fvmpt2 6779 . . . . . . . . 9 ((𝑡𝑇 ∧ ((𝑃𝑡)↑𝑁) ∈ ℝ) → (𝐻𝑡) = ((𝑃𝑡)↑𝑁))
323, 10, 31syl2anc 586 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) = ((𝑃𝑡)↑𝑁))
3332eqcomd 2827 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) = (𝐻𝑡))
3429, 33oveq12d 7174 . . . . . 6 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) = ((𝐺𝑡) − (𝐻𝑡)))
352, 34mpteq2da 5160 . . . . 5 (𝜑 → (𝑡𝑇 ↦ (1 − ((𝑃𝑡)↑𝑁))) = (𝑡𝑇 ↦ ((𝐺𝑡) − (𝐻𝑡))))
3612, 35syl5eq 2868 . . . 4 (𝜑𝐹 = (𝑡𝑇 ↦ ((𝐺𝑡) − (𝐻𝑡))))
3723stoweidlem4 42309 . . . . . . 7 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
3824, 37mpan2 689 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
3925, 38eqeltrid 2917 . . . . 5 (𝜑𝐺𝐴)
40 stoweidlem40.1 . . . . . . 7 𝑡𝑃
41 stoweidlem40.7 . . . . . . 7 (𝜑𝑃𝐴)
4240, 2, 21, 22, 23, 41, 8stoweidlem19 42324 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ ((𝑃𝑡)↑𝑁)) ∈ 𝐴)
4330, 42eqeltrid 2917 . . . . 5 (𝜑𝐻𝐴)
44 nfmpt1 5164 . . . . . . 7 𝑡(𝑡𝑇 ↦ 1)
4525, 44nfcxfr 2975 . . . . . 6 𝑡𝐺
46 nfmpt1 5164 . . . . . . 7 𝑡(𝑡𝑇 ↦ ((𝑃𝑡)↑𝑁))
4730, 46nfcxfr 2975 . . . . . 6 𝑡𝐻
48 stoweidlem40.10 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
4945, 47, 2, 21, 48, 22, 23stoweidlem33 42338 . . . . 5 ((𝜑𝐺𝐴𝐻𝐴) → (𝑡𝑇 ↦ ((𝐺𝑡) − (𝐻𝑡))) ∈ 𝐴)
5039, 43, 49mpd3an23 1459 . . . 4 (𝜑 → (𝑡𝑇 ↦ ((𝐺𝑡) − (𝐻𝑡))) ∈ 𝐴)
5136, 50eqeltrd 2913 . . 3 (𝜑𝐹𝐴)
52 stoweidlem40.14 . . . 4 (𝜑𝑀 ∈ ℕ)
5352nnnn0d 11956 . . 3 (𝜑𝑀 ∈ ℕ0)
5420, 2, 21, 22, 23, 51, 53stoweidlem19 42324 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑀)) ∈ 𝐴)
5518, 54eqeltrd 2913 1 (𝜑𝑄𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wnf 1784  wcel 2114  wnfc 2961  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  cn 11638  0cn0 11898  cexp 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-seq 13371  df-exp 13431
This theorem is referenced by:  stoweidlem45  42350
  Copyright terms: Public domain W3C validator