MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subglsm Structured version   Visualization version   GIF version

Theorem subglsm 18799
Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
subglsm.h 𝐻 = (𝐺s 𝑆)
subglsm.s = (LSSum‘𝐺)
subglsm.a 𝐴 = (LSSum‘𝐻)
Assertion
Ref Expression
subglsm ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = (𝑇𝐴𝑈))

Proof of Theorem subglsm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1199 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑥𝑇𝑦𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
2 subglsm.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
3 eqid 2821 . . . . . . 7 (+g𝐺) = (+g𝐺)
42, 3ressplusg 16612 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
51, 4syl 17 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑥𝑇𝑦𝑈) → (+g𝐺) = (+g𝐻))
65oveqd 7173 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑥𝑇𝑦𝑈) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
76mpoeq3dva 7231 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
87rneqd 5808 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
9 subgrcl 18284 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1093ad2ant1 1129 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝐺 ∈ Grp)
11 simp2 1133 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑇𝑆)
12 eqid 2821 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
1312subgss 18280 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
14133ad2ant1 1129 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑆 ⊆ (Base‘𝐺))
1511, 14sstrd 3977 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ⊆ (Base‘𝐺))
16 simp3 1134 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑈𝑆)
1716, 14sstrd 3977 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ⊆ (Base‘𝐺))
18 subglsm.s . . . 4 = (LSSum‘𝐺)
1912, 3, 18lsmvalx 18764 . . 3 ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)))
2010, 15, 17, 19syl3anc 1367 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)))
212subggrp 18282 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
22213ad2ant1 1129 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝐻 ∈ Grp)
232subgbas 18283 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
24233ad2ant1 1129 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑆 = (Base‘𝐻))
2511, 24sseqtrd 4007 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ⊆ (Base‘𝐻))
2616, 24sseqtrd 4007 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ⊆ (Base‘𝐻))
27 eqid 2821 . . . 4 (Base‘𝐻) = (Base‘𝐻)
28 eqid 2821 . . . 4 (+g𝐻) = (+g𝐻)
29 subglsm.a . . . 4 𝐴 = (LSSum‘𝐻)
3027, 28, 29lsmvalx 18764 . . 3 ((𝐻 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐻) ∧ 𝑈 ⊆ (Base‘𝐻)) → (𝑇𝐴𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
3122, 25, 26, 30syl3anc 1367 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝐴𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
328, 20, 313eqtr4d 2866 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = (𝑇𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  wss 3936  ran crn 5556  cfv 6355  (class class class)co 7156  cmpo 7158  Basecbs 16483  s cress 16484  +gcplusg 16565  Grpcgrp 18103  SubGrpcsubg 18273  LSSumclsm 18759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-subg 18276  df-lsm 18761
This theorem is referenced by:  pgpfaclem1  19203
  Copyright terms: Public domain W3C validator