Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submatminr1 Structured version   Visualization version   GIF version

Theorem submatminr1 30206
Description: If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.)
Hypotheses
Ref Expression
submateq.a 𝐴 = ((1...𝑁) Mat 𝑅)
submateq.b 𝐵 = (Base‘𝐴)
submateq.n (𝜑𝑁 ∈ ℕ)
submateq.i (𝜑𝐼 ∈ (1...𝑁))
submateq.j (𝜑𝐽 ∈ (1...𝑁))
submatminr1.r (𝜑𝑅 ∈ Ring)
submatminr1.m (𝜑𝑀𝐵)
submatminr1.e 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
Assertion
Ref Expression
submatminr1 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽))

Proof of Theorem submatminr1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submateq.a . 2 𝐴 = ((1...𝑁) Mat 𝑅)
2 submateq.b . 2 𝐵 = (Base‘𝐴)
3 submateq.n . 2 (𝜑𝑁 ∈ ℕ)
4 submateq.i . 2 (𝜑𝐼 ∈ (1...𝑁))
5 submateq.j . 2 (𝜑𝐽 ∈ (1...𝑁))
6 submatminr1.m . 2 (𝜑𝑀𝐵)
7 submatminr1.e . . . 4 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
8 submatminr1.r . . . . . 6 (𝜑𝑅 ∈ Ring)
9 eqid 2760 . . . . . . 7 ((1...𝑁) matRRep 𝑅) = ((1...𝑁) matRRep 𝑅)
10 eqid 2760 . . . . . . 7 (1r𝑅) = (1r𝑅)
111, 2, 9, 10minmar1marrep 20678 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r𝑅)))
128, 6, 11syl2anc 696 . . . . 5 (𝜑 → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r𝑅)))
1312oveqd 6831 . . . 4 (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽))
147, 13syl5eq 2806 . . 3 (𝜑𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽))
15 eqid 2760 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1615, 10ringidcl 18788 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
178, 16syl 17 . . . 4 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
181, 2marrepcl 20592 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽) ∈ 𝐵)
198, 6, 17, 4, 5, 18syl32anc 1485 . . 3 (𝜑 → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽) ∈ 𝐵)
2014, 19eqeltrd 2839 . 2 (𝜑𝐸𝐵)
21143ad2ant1 1128 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽))
2221oveqd 6831 . . 3 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽)𝑗))
2363ad2ant1 1128 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑀𝐵)
24173ad2ant1 1128 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (1r𝑅) ∈ (Base‘𝑅))
2543ad2ant1 1128 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐼 ∈ (1...𝑁))
2653ad2ant1 1128 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐽 ∈ (1...𝑁))
27 simp2 1132 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ ((1...𝑁) ∖ {𝐼}))
2827eldifad 3727 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ (1...𝑁))
29 simp3 1133 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ ((1...𝑁) ∖ {𝐽}))
3029eldifad 3727 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ (1...𝑁))
31 eqid 2760 . . . . 5 (0g𝑅) = (0g𝑅)
321, 2, 9, 31marrepeval 20591 . . . 4 (((𝑀𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))
3323, 24, 25, 26, 28, 30, 32syl222anc 1493 . . 3 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))
34 eldifsn 4462 . . . . . . 7 (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑖 ∈ (1...𝑁) ∧ 𝑖𝐼))
3527, 34sylib 208 . . . . . 6 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖 ∈ (1...𝑁) ∧ 𝑖𝐼))
3635simprd 482 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖𝐼)
3736neneqd 2937 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → ¬ 𝑖 = 𝐼)
3837iffalsed 4241 . . 3 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗))
3922, 33, 383eqtrrd 2799 . 2 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝑀𝑗) = (𝑖𝐸𝑗))
401, 2, 3, 4, 5, 6, 20, 39submateq 30205 1 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  cdif 3712  ifcif 4230  {csn 4321  cfv 6049  (class class class)co 6814  1c1 10149  cn 11232  ...cfz 12539  Basecbs 16079  0gc0g 16322  1rcur 18721  Ringcrg 18767   Mat cmat 20435   matRRep cmarrep 20584   minMatR1 cminmar1 20661  subMat1csmat 30189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-fzo 12680  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-hom 16188  df-cco 16189  df-0g 16324  df-prds 16330  df-pws 16332  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-mgp 18710  df-ur 18722  df-ring 18769  df-sra 19394  df-rgmod 19395  df-dsmm 20298  df-frlm 20313  df-mat 20436  df-marrep 20586  df-minmar1 20663  df-smat 30190
This theorem is referenced by:  madjusmdetlem1  30223
  Copyright terms: Public domain W3C validator