Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  supminf Structured version   Visualization version   GIF version

Theorem supminf 11719
 Description: The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011.) ( Revised by AV, 13-Sep-2020.)
Assertion
Ref Expression
supminf ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem supminf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 negn0 10403 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅)
2 ublbneg 11717 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
3 ssrab2 3666 . . . . . 6 {𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ
4 infrenegsup 10950 . . . . . 6 (({𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ ∧ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
53, 4mp3an1 1408 . . . . 5 (({𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
61, 2, 5syl2an 494 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
763impa 1256 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
8 elrabi 3342 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} → 𝑥 ∈ ℝ)
98adantl 482 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}) → 𝑥 ∈ ℝ)
10 ssel2 3578 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
11 negeq 10217 . . . . . . . . . . 11 (𝑤 = 𝑥 → -𝑤 = -𝑥)
1211eleq1d 2683 . . . . . . . . . 10 (𝑤 = 𝑥 → (-𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
1312elrab3 3347 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
14 renegcl 10288 . . . . . . . . . 10 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
15 negeq 10217 . . . . . . . . . . . 12 (𝑧 = -𝑥 → -𝑧 = --𝑥)
1615eleq1d 2683 . . . . . . . . . . 11 (𝑧 = -𝑥 → (-𝑧𝐴 ↔ --𝑥𝐴))
1716elrab3 3347 . . . . . . . . . 10 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
1814, 17syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
19 recn 9970 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2019negnegd 10327 . . . . . . . . . 10 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
2120eleq1d 2683 . . . . . . . . 9 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
2213, 18, 213bitrd 294 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ 𝑥𝐴))
2322adantl 482 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ 𝑥𝐴))
249, 10, 23eqrdav 2620 . . . . . 6 (𝐴 ⊆ ℝ → {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} = 𝐴)
2524supeq1d 8296 . . . . 5 (𝐴 ⊆ ℝ → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
26253ad2ant1 1080 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
2726negeqd 10219 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = -sup(𝐴, ℝ, < ))
287, 27eqtrd 2655 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ))
29 infrecl 10949 . . . . . 6 (({𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ ∧ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
303, 29mp3an1 1408 . . . . 5 (({𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
311, 2, 30syl2an 494 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
32313impa 1256 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
33 suprcl 10927 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
34 recn 9970 . . . 4 (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℂ)
35 recn 9970 . . . 4 (sup(𝐴, ℝ, < ) ∈ ℝ → sup(𝐴, ℝ, < ) ∈ ℂ)
36 negcon2 10278 . . . 4 ((inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℂ ∧ sup(𝐴, ℝ, < ) ∈ ℂ) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3734, 35, 36syl2an 494 . . 3 ((inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ ∧ sup(𝐴, ℝ, < ) ∈ ℝ) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3832, 33, 37syl2anc 692 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3928, 38mpbid 222 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∃wrex 2908  {crab 2911   ⊆ wss 3555  ∅c0 3891   class class class wbr 4613  supcsup 8290  infcinf 8291  ℂcc 9878  ℝcr 9879   < clt 10018   ≤ cle 10019  -cneg 10211 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator