MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdswrdlem Structured version   Visualization version   GIF version

Theorem swrdswrdlem 13413
Description: Lemma for swrdswrd 13414. (Contributed by Alexander van der Vekens, 4-Apr-2018.)
Assertion
Ref Expression
swrdswrdlem (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(#‘𝑊))))

Proof of Theorem swrdswrdlem
StepHypRef Expression
1 simpl1 1062 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝑊 ∈ Word 𝑉)
2 elfz2 12291 . . . . . 6 (𝐿 ∈ (𝐾...(𝑁𝑀)) ↔ ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))))
3 elfz2nn0 12388 . . . . . . . . . . . 12 (𝐾 ∈ (0...(𝑁𝑀)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)))
4 elfz2nn0 12388 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
5 nn0addcl 11288 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
65adantrr 752 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑀 + 𝐾) ∈ ℕ0)
76adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ 𝐾𝐿) → (𝑀 + 𝐾) ∈ ℕ0)
8 elnn0z 11350 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
9 0red 10001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
10 zre 11341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1110adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
12 zre 11341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1312adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
14 letr 10091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
159, 11, 13, 14syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
16 elnn0z 11350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿))
17 nn0addcl 11288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 + 𝐿) ∈ ℕ0)
1817expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐿 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝑀 + 𝐿) ∈ ℕ0))
1916, 18sylbir 225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℤ ∧ 0 ≤ 𝐿) → (𝑀 ∈ ℕ0 → (𝑀 + 𝐿) ∈ ℕ0))
2019ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐿 ∈ ℤ → (0 ≤ 𝐿 → (𝑀 ∈ ℕ0 → (𝑀 + 𝐿) ∈ ℕ0)))
2120adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐿 → (𝑀 ∈ ℕ0 → (𝑀 + 𝐿) ∈ ℕ0)))
2215, 21syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → (𝑀 ∈ ℕ0 → (𝑀 + 𝐿) ∈ ℕ0)))
2322expd 452 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝐾𝐿 → (𝑀 ∈ ℕ0 → (𝑀 + 𝐿) ∈ ℕ0))))
2423com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝑀 ∈ ℕ0 → (𝐾𝐿 → (𝑀 + 𝐿) ∈ ℕ0))))
2524impancom 456 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝐿 ∈ ℤ → (𝑀 ∈ ℕ0 → (𝐾𝐿 → (𝑀 + 𝐿) ∈ ℕ0))))
268, 25sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → (𝑀 ∈ ℕ0 → (𝐾𝐿 → (𝑀 + 𝐿) ∈ ℕ0))))
2726imp 445 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝐾𝐿 → (𝑀 + 𝐿) ∈ ℕ0)))
2827impcom 446 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → (𝐾𝐿 → (𝑀 + 𝐿) ∈ ℕ0))
2928imp 445 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ 𝐾𝐿) → (𝑀 + 𝐿) ∈ ℕ0)
30 nn0re 11261 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
3130adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
3231adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐾 ∈ ℝ)
3312adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
3433adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐿 ∈ ℝ)
35 nn0re 11261 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
3635adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → 𝑀 ∈ ℝ)
3732, 34, 36leadd2d 10582 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → (𝐾𝐿 ↔ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))
3837biimpa 501 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ 𝐾𝐿) → (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))
397, 29, 383jca 1240 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ 𝐾𝐿) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))
4039exp31 629 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾𝐿 → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
4140com23 86 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (𝐾𝐿 → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
42413ad2ant1 1080 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐾𝐿 → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
434, 42sylbi 207 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (0...𝑁) → (𝐾𝐿 → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
44433ad2ant3 1082 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝐾𝐿 → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
4544com13 88 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾𝐿 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
4645ex 450 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → (𝐾𝐿 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
47463ad2ant1 1080 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)) → (𝐿 ∈ ℤ → (𝐾𝐿 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
483, 47sylbi 207 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁𝑀)) → (𝐿 ∈ ℤ → (𝐾𝐿 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
4948com13 88 . . . . . . . . . 10 (𝐾𝐿 → (𝐿 ∈ ℤ → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
5049adantr 481 . . . . . . . . 9 ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐿 ∈ ℤ → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
5150com12 32 . . . . . . . 8 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
52513ad2ant3 1082 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
5352imp 445 . . . . . 6 (((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
542, 53sylbi 207 . . . . 5 (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
5554impcom 446 . . . 4 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))
5655impcom 446 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))
57 elfz2nn0 12388 . . 3 ((𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ↔ ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))
5856, 57sylibr 224 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)))
59 elfz2nn0 12388 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (0...(#‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)))
6028com12 32 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾𝐿 → ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑀 + 𝐿) ∈ ℕ0))
6160adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑀 + 𝐿) ∈ ℕ0))
6261impcom 446 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) → (𝑀 + 𝐿) ∈ ℕ0)
6362adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊))) → (𝑀 + 𝐿) ∈ ℕ0)
64 simpr2 1066 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊))) → (#‘𝑊) ∈ ℕ0)
65 nn0re 11261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
6665, 35anim12i 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
67 nn0re 11261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ ℝ)
6866, 67anim12i 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ (#‘𝑊) ∈ ℕ0) → ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ))
69 simpllr 798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → 𝑀 ∈ ℝ)
70 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → 𝐿 ∈ ℝ)
71 simplll 797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → 𝑁 ∈ ℝ)
7269, 70, 71leaddsub2d 10589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → ((𝑀 + 𝐿) ≤ 𝑁𝐿 ≤ (𝑁𝑀)))
73 readdcl 9979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 + 𝐿) ∈ ℝ)
7473ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (𝑀 ∈ ℝ → (𝐿 ∈ ℝ → (𝑀 + 𝐿) ∈ ℝ))
7574adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 ∈ ℝ → (𝑀 + 𝐿) ∈ ℝ))
7675adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) → (𝐿 ∈ ℝ → (𝑀 + 𝐿) ∈ ℝ))
7776imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (𝑀 + 𝐿) ∈ ℝ)
78 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) → (#‘𝑊) ∈ ℝ)
7978adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (#‘𝑊) ∈ ℝ)
80 letr 10091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑀 + 𝐿) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ) → (((𝑀 + 𝐿) ≤ 𝑁𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊)))
8180expd 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑀 + 𝐿) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ) → ((𝑀 + 𝐿) ≤ 𝑁 → (𝑁 ≤ (#‘𝑊) → (𝑀 + 𝐿) ≤ (#‘𝑊))))
8277, 71, 79, 81syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → ((𝑀 + 𝐿) ≤ 𝑁 → (𝑁 ≤ (#‘𝑊) → (𝑀 + 𝐿) ≤ (#‘𝑊))))
8382imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) ∧ (𝑀 + 𝐿) ≤ 𝑁) → (𝑁 ≤ (#‘𝑊) → (𝑀 + 𝐿) ≤ (#‘𝑊)))
8483a1dd 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) ∧ (𝑀 + 𝐿) ≤ 𝑁) → (𝑁 ≤ (#‘𝑊) → (0 ≤ 𝐿 → (𝑀 + 𝐿) ≤ (#‘𝑊))))
8584ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → ((𝑀 + 𝐿) ≤ 𝑁 → (𝑁 ≤ (#‘𝑊) → (0 ≤ 𝐿 → (𝑀 + 𝐿) ≤ (#‘𝑊)))))
8672, 85sylbird 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (𝐿 ≤ (𝑁𝑀) → (𝑁 ≤ (#‘𝑊) → (0 ≤ 𝐿 → (𝑀 + 𝐿) ≤ (#‘𝑊)))))
8786com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (#‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (𝑁 ≤ (#‘𝑊) → (𝐿 ≤ (𝑁𝑀) → (0 ≤ 𝐿 → (𝑀 + 𝐿) ≤ (#‘𝑊)))))
8868, 12, 87syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ (#‘𝑊) ∈ ℕ0) ∧ 𝐿 ∈ ℤ) → (𝑁 ≤ (#‘𝑊) → (𝐿 ≤ (𝑁𝑀) → (0 ≤ 𝐿 → (𝑀 + 𝐿) ≤ (#‘𝑊)))))
8988ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ (#‘𝑊) ∈ ℕ0) → (𝐿 ∈ ℤ → (𝑁 ≤ (#‘𝑊) → (𝐿 ≤ (𝑁𝑀) → (0 ≤ 𝐿 → (𝑀 + 𝐿) ≤ (#‘𝑊))))))
9089com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ (#‘𝑊) ∈ ℕ0) → (0 ≤ 𝐿 → (𝑁 ≤ (#‘𝑊) → (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → (𝑀 + 𝐿) ≤ (#‘𝑊))))))
9190ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((#‘𝑊) ∈ ℕ0 → (0 ≤ 𝐿 → (𝑁 ≤ (#‘𝑊) → (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → (𝑀 + 𝐿) ≤ (#‘𝑊)))))))
9291com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 ≤ (#‘𝑊) → (0 ≤ 𝐿 → ((#‘𝑊) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → (𝑀 + 𝐿) ≤ (#‘𝑊)))))))
9392ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝑁 ≤ (#‘𝑊) → (0 ≤ 𝐿 → ((#‘𝑊) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → (𝑀 + 𝐿) ≤ (#‘𝑊))))))))
9493com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ0 → ((#‘𝑊) ∈ ℕ0 → (𝑁 ≤ (#‘𝑊) → (0 ≤ 𝐿 → (𝑀 ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → (𝑀 + 𝐿) ≤ (#‘𝑊))))))))
95943imp 1254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (0 ≤ 𝐿 → (𝑀 ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → (𝑀 + 𝐿) ≤ (#‘𝑊))))))
9695com15 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐿 ∈ ℤ → (0 ≤ 𝐿 → (𝑀 ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊))))))
9796adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐿 → (𝑀 ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊))))))
9815, 97syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → (𝑀 ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊))))))
9998expd 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝐾𝐿 → (𝑀 ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊)))))))
10099com35 98 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝐿 ≤ (𝑁𝑀) → (𝑀 ∈ ℕ0 → (𝐾𝐿 → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊)))))))
101100com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾𝐿 → (𝐿 ≤ (𝑁𝑀) → (𝑀 ∈ ℕ0 → (0 ≤ 𝐾 → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊)))))))
102101impd 447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝑀 ∈ ℕ0 → (0 ≤ 𝐾 → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊))))))
103102com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝑀 ∈ ℕ0 → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊))))))
104103impancom 456 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝐿 ∈ ℤ → (𝑀 ∈ ℕ0 → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊))))))
1058, 104sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → (𝑀 ∈ ℕ0 → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊))))))
106105imp 445 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → (𝑀 ∈ ℕ0 → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊)))))
107106impcom 446 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊))))
108107imp 445 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 + 𝐿) ≤ (#‘𝑊)))
109108imp 445 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊))) → (𝑀 + 𝐿) ≤ (#‘𝑊))
11063, 64, 1093jca 1240 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊))) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊)))
111110exp41 637 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0 → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊))))))
112111com24 95 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊))))))
1131123ad2ant1 1080 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊))))))
1144, 113sylbi 207 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...𝑁) → ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊))))))
115114com12 32 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑁 ≤ (#‘𝑊)) → (𝑀 ∈ (0...𝑁) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊))))))
11659, 115sylbi 207 . . . . . . . . . . . . . . 15 (𝑁 ∈ (0...(#‘𝑊)) → (𝑀 ∈ (0...𝑁) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊))))))
117116imp 445 . . . . . . . . . . . . . 14 ((𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊)))))
1181173adant1 1077 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊)))))
119118com13 88 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊)))))
120119ex 450 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊))))))
1211203ad2ant1 1080 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)) → (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊))))))
1223, 121sylbi 207 . . . . . . . . 9 (𝐾 ∈ (0...(𝑁𝑀)) → (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊))))))
123122com3l 89 . . . . . . . 8 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊))))))
1241233ad2ant3 1082 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊))))))
125124imp 445 . . . . . 6 (((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊)))))
1262, 125sylbi 207 . . . . 5 (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊)))))
127126impcom 446 . . . 4 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊))))
128127impcom 446 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊)))
129 elfz2nn0 12388 . . 3 ((𝑀 + 𝐿) ∈ (0...(#‘𝑊)) ↔ ((𝑀 + 𝐿) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (#‘𝑊)))
130128, 129sylibr 224 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑀 + 𝐿) ∈ (0...(#‘𝑊)))
1311, 58, 1303jca 1240 1 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(#‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036  wcel 1987   class class class wbr 4623  cfv 5857  (class class class)co 6615  cr 9895  0cc0 9896   + caddc 9899  cle 10035  cmin 10226  0cn0 11252  cz 11337  ...cfz 12284  #chash 13073  Word cword 13246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285
This theorem is referenced by:  swrdswrd  13414
  Copyright terms: Public domain W3C validator