Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgidinside Structured version   Visualization version   GIF version

Theorem tgidinside 25366
 Description: Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
lnxfr.r = (cgrG‘𝐺)
lnxfr.a (𝜑𝐴𝑃)
lnxfr.b (𝜑𝐵𝑃)
lnxfr.d = (dist‘𝐺)
tgidinside.1 (𝜑𝑍 ∈ (𝑋𝐼𝑌))
tgidinside.2 (𝜑 → (𝑋 𝑍) = (𝑋 𝐴))
tgidinside.3 (𝜑 → (𝑌 𝑍) = (𝑌 𝐴))
Assertion
Ref Expression
tgidinside (𝜑𝑍 = 𝐴)

Proof of Theorem tgidinside
StepHypRef Expression
1 tglngval.p . . . 4 𝑃 = (Base‘𝐺)
2 lnxfr.d . . . 4 = (dist‘𝐺)
3 tglngval.i . . . 4 𝐼 = (Itv‘𝐺)
4 tglngval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . . 4 ((𝜑𝑋 = 𝑌) → 𝐺 ∈ TarskiG)
6 tglngval.x . . . . 5 (𝜑𝑋𝑃)
76adantr 481 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑋𝑃)
8 tgcolg.z . . . . 5 (𝜑𝑍𝑃)
98adantr 481 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑍𝑃)
10 tgidinside.1 . . . . . 6 (𝜑𝑍 ∈ (𝑋𝐼𝑌))
1110adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑍 ∈ (𝑋𝐼𝑌))
12 simpr 477 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
1312oveq2d 6620 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝑋𝐼𝑋) = (𝑋𝐼𝑌))
1411, 13eleqtrrd 2701 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑍 ∈ (𝑋𝐼𝑋))
151, 2, 3, 5, 7, 9, 14axtgbtwnid 25265 . . 3 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑍)
16 lnxfr.a . . . . 5 (𝜑𝐴𝑃)
1716adantr 481 . . . 4 ((𝜑𝑋 = 𝑌) → 𝐴𝑃)
18 tgidinside.2 . . . . 5 (𝜑 → (𝑋 𝑍) = (𝑋 𝐴))
1918adantr 481 . . . 4 ((𝜑𝑋 = 𝑌) → (𝑋 𝑍) = (𝑋 𝐴))
201, 2, 3, 5, 7, 9, 7, 17, 19, 15tgcgreq 25277 . . 3 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝐴)
2115, 20eqtr3d 2657 . 2 ((𝜑𝑋 = 𝑌) → 𝑍 = 𝐴)
22 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
234adantr 481 . . 3 ((𝜑𝑋𝑌) → 𝐺 ∈ TarskiG)
246adantr 481 . . 3 ((𝜑𝑋𝑌) → 𝑋𝑃)
25 tglngval.y . . . 4 (𝜑𝑌𝑃)
2625adantr 481 . . 3 ((𝜑𝑋𝑌) → 𝑌𝑃)
278adantr 481 . . 3 ((𝜑𝑋𝑌) → 𝑍𝑃)
28 lnxfr.r . . 3 = (cgrG‘𝐺)
2916adantr 481 . . 3 ((𝜑𝑋𝑌) → 𝐴𝑃)
30 lnxfr.b . . . 4 (𝜑𝐵𝑃)
3130adantr 481 . . 3 ((𝜑𝑋𝑌) → 𝐵𝑃)
32 simpr 477 . . 3 ((𝜑𝑋𝑌) → 𝑋𝑌)
331, 22, 3, 4, 6, 8, 25, 10btwncolg3 25352 . . . 4 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
3433adantr 481 . . 3 ((𝜑𝑋𝑌) → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
3518adantr 481 . . 3 ((𝜑𝑋𝑌) → (𝑋 𝑍) = (𝑋 𝐴))
36 tgidinside.3 . . . 4 (𝜑 → (𝑌 𝑍) = (𝑌 𝐴))
3736adantr 481 . . 3 ((𝜑𝑋𝑌) → (𝑌 𝑍) = (𝑌 𝐴))
381, 22, 3, 23, 24, 26, 27, 28, 29, 31, 2, 32, 34, 35, 37lnid 25365 . 2 ((𝜑𝑋𝑌) → 𝑍 = 𝐴)
3921, 38pm2.61dane 2877 1 (𝜑𝑍 = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ‘cfv 5847  (class class class)co 6604  Basecbs 15781  distcds 15871  TarskiGcstrkg 25229  Itvcitv 25235  LineGclng 25236  cgrGccgrg 25305 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-s2 13530  df-s3 13531  df-trkgc 25247  df-trkgb 25248  df-trkgcb 25249  df-trkg 25252  df-cgrg 25306 This theorem is referenced by:  miduniq  25480  ragflat2  25498
 Copyright terms: Public domain W3C validator