Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgqioo2 Structured version   Visualization version   GIF version

Theorem tgqioo2 39216
Description: Every open set of reals is the (countable) union of open interval with rational bounds. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
tgqioo2.1 𝐽 = (topGen‘ran (,))
tgqioo2.2 (𝜑𝐴𝐽)
Assertion
Ref Expression
tgqioo2 (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑞))
Distinct variable group:   𝐴,𝑞
Allowed substitution hints:   𝜑(𝑞)   𝐽(𝑞)

Proof of Theorem tgqioo2
StepHypRef Expression
1 tgqioo2.2 . . 3 (𝜑𝐴𝐽)
2 tgqioo2.1 . . . . 5 𝐽 = (topGen‘ran (,))
3 eqid 2621 . . . . . 6 (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ)))
43tgqioo 22526 . . . . 5 (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ)))
52, 4, 33eqtri 2647 . . . 4 𝐽 = (topGen‘((,) “ (ℚ × ℚ)))
65a1i 11 . . 3 (𝜑𝐽 = (topGen‘((,) “ (ℚ × ℚ))))
71, 6eleqtrd 2700 . 2 (𝜑𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))))
8 iooex 12148 . . . 4 (,) ∈ V
9 imaexg 7057 . . . 4 ((,) ∈ V → ((,) “ (ℚ × ℚ)) ∈ V)
108, 9ax-mp 5 . . 3 ((,) “ (ℚ × ℚ)) ∈ V
11 eltg3 20690 . . 3 (((,) “ (ℚ × ℚ)) ∈ V → (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑞)))
1210, 11ax-mp 5 . 2 (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑞))
137, 12sylib 208 1 (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  Vcvv 3189  wss 3559   cuni 4407   × cxp 5077  ran crn 5080  cima 5082  cfv 5852  cq 11740  (,)cioo 12125  topGenctg 16030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-n0 11245  df-z 11330  df-uz 11640  df-q 11741  df-ioo 12129  df-topgen 16036  df-bases 20674
This theorem is referenced by:  smfpimbor1lem1  40338
  Copyright terms: Public domain W3C validator