Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycfvres2 Structured version   Visualization version   GIF version

Theorem tocycfvres2 30753
Description: A cyclic permutation is the identity outside of its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
Assertion
Ref Expression
tocycfvres2 (𝜑 → ((𝐶𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊)))

Proof of Theorem tocycfvres2
StepHypRef Expression
1 tocycval.1 . . . 4 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . . 4 (𝜑𝐷𝑉)
3 tocycfv.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . . 4 (𝜑𝑊:dom 𝑊1-1𝐷)
51, 2, 3, 4tocycfv 30751 . . 3 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
65reseq1d 5852 . 2 (𝜑 → ((𝐶𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ↾ (𝐷 ∖ ran 𝑊)))
7 fnresi 6476 . . . 4 ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)
87a1i 11 . . 3 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊))
9 1zzd 12014 . . . . 5 (𝜑 → 1 ∈ ℤ)
10 cshwfn 14163 . . . . 5 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
113, 9, 10syl2anc 586 . . . 4 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
12 f1f1orn 6626 . . . . 5 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
13 f1ocnv 6627 . . . . 5 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
14 f1ofn 6616 . . . . 5 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊 Fn ran 𝑊)
154, 12, 13, 144syl 19 . . . 4 (𝜑𝑊 Fn ran 𝑊)
16 dfdm4 5764 . . . . 5 dom 𝑊 = ran 𝑊
17 wrddm 13869 . . . . . . 7 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
183, 17syl 17 . . . . . 6 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
19 ssidd 3990 . . . . . 6 (𝜑 → (0..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
2018, 19eqsstrd 4005 . . . . 5 (𝜑 → dom 𝑊 ⊆ (0..^(♯‘𝑊)))
2116, 20eqsstrrid 4016 . . . 4 (𝜑 → ran 𝑊 ⊆ (0..^(♯‘𝑊)))
22 fnco 6465 . . . 4 (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ 𝑊 Fn ran 𝑊 ∧ ran 𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊)
2311, 15, 21, 22syl3anc 1367 . . 3 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊)
24 incom 4178 . . . . 5 (ran 𝑊 ∩ (𝐷 ∖ ran 𝑊)) = ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊)
25 disjdif 4421 . . . . 5 (ran 𝑊 ∩ (𝐷 ∖ ran 𝑊)) = ∅
2624, 25eqtr3i 2846 . . . 4 ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅
2726a1i 11 . . 3 (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)
28 fnunres1 30356 . . 3 ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊 ∧ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
298, 23, 27, 28syl3anc 1367 . 2 (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
306, 29eqtrd 2856 1 (𝜑 → ((𝐶𝑊) ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291   I cid 5459  ccnv 5554  dom cdm 5555  ran crn 5556  cres 5557  ccom 5559   Fn wfn 6350  1-1wf1 6352  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538  cz 11982  ..^cfzo 13034  chash 13691  Word cword 13862   cyclShift ccsh 14150  toCycctocyc 30748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-hash 13692  df-word 13863  df-concat 13923  df-substr 14003  df-pfx 14033  df-csh 14151  df-tocyc 30749
This theorem is referenced by:  cycpmconjslem2  30797  cyc3conja  30799
  Copyright terms: Public domain W3C validator