MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr1 Structured version   Visualization version   GIF version

Theorem tfr1 8033
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class 𝐺, normally a function, and define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr1 𝐹 Fn On

Proof of Theorem tfr1
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
21tfrlem7 8019 . . 3 Fun recs(𝐺)
31tfrlem14 8027 . . 3 dom recs(𝐺) = On
4 df-fn 6358 . . 3 (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On))
52, 3, 4mpbir2an 709 . 2 recs(𝐺) Fn On
6 tfr.1 . . 3 𝐹 = recs(𝐺)
76fneq1i 6450 . 2 (𝐹 Fn On ↔ recs(𝐺) Fn On)
85, 7mpbir 233 1 𝐹 Fn On
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  {cab 2799  wral 3138  wrex 3139  dom cdm 5555  cres 5557  Oncon0 6191  Fun wfun 6349   Fn wfn 6350  cfv 6355  recscrecs 8007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-wrecs 7947  df-recs 8008
This theorem is referenced by:  tfr2  8034  tfr3  8035  recsfnon  8039  rdgfnon  8054  dfac8alem  9455  dfac12lem1  9569  dfac12lem2  9570  zorn2lem1  9918  zorn2lem2  9919  zorn2lem4  9921  zorn2lem5  9922  zorn2lem6  9923  zorn2lem7  9924  ttukeylem3  9933  ttukeylem5  9935  ttukeylem6  9936  madeval  33289  dnnumch1  39664  dnnumch3lem  39666  dnnumch3  39667  aomclem6  39679
  Copyright terms: Public domain W3C validator