MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrex Structured version   Visualization version   GIF version

Theorem upgrex 26877
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrex ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉   𝑥,𝐸   𝑥,𝐹   𝑥,𝐴,𝑦   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝑉

Proof of Theorem upgrex
StepHypRef Expression
1 isupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2upgrn0 26874 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)
4 n0 4310 . . . 4 ((𝐸𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐸𝐹))
53, 4sylib 220 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥 𝑥 ∈ (𝐸𝐹))
6 simp1 1132 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐺 ∈ UPGraph)
7 fndm 6455 . . . . . . . . . . . . 13 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
87eqcomd 2827 . . . . . . . . . . . 12 (𝐸 Fn 𝐴𝐴 = dom 𝐸)
98eleq2d 2898 . . . . . . . . . . 11 (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸))
109biimpd 231 . . . . . . . . . 10 (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸))
1110a1i 11 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸)))
12113imp 1107 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐹 ∈ dom 𝐸)
131, 2upgrss 26873 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
146, 12, 13syl2anc 586 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ⊆ 𝑉)
1514sselda 3967 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → 𝑥𝑉)
1615adantr 483 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → 𝑥𝑉)
17 simpr 487 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → ((𝐸𝐹) ∖ {𝑥}) = ∅)
18 ssdif0 4323 . . . . . . . . . 10 ((𝐸𝐹) ⊆ {𝑥} ↔ ((𝐸𝐹) ∖ {𝑥}) = ∅)
1917, 18sylibr 236 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → (𝐸𝐹) ⊆ {𝑥})
20 simpr 487 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → 𝑥 ∈ (𝐸𝐹))
2120snssd 4742 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → {𝑥} ⊆ (𝐸𝐹))
2221adantr 483 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → {𝑥} ⊆ (𝐸𝐹))
2319, 22eqssd 3984 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → (𝐸𝐹) = {𝑥})
24 preq2 4670 . . . . . . . . . 10 (𝑦 = 𝑥 → {𝑥, 𝑦} = {𝑥, 𝑥})
25 dfsn2 4580 . . . . . . . . . 10 {𝑥} = {𝑥, 𝑥}
2624, 25syl6eqr 2874 . . . . . . . . 9 (𝑦 = 𝑥 → {𝑥, 𝑦} = {𝑥})
2726rspceeqv 3638 . . . . . . . 8 ((𝑥𝑉 ∧ (𝐸𝐹) = {𝑥}) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
2816, 23, 27syl2anc 586 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
29 n0 4310 . . . . . . . 8 (((𝐸𝐹) ∖ {𝑥}) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))
3014adantr 483 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ⊆ 𝑉)
31 simprr 771 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))
3231eldifad 3948 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦 ∈ (𝐸𝐹))
3330, 32sseldd 3968 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦𝑉)
341, 2upgrfi 26876 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ Fin)
3534adantr 483 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ∈ Fin)
36 simprl 769 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑥 ∈ (𝐸𝐹))
3736, 32prssd 4755 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ⊆ (𝐸𝐹))
38 fvex 6683 . . . . . . . . . . . . . . . . 17 (𝐸𝐹) ∈ V
39 ssdomg 8555 . . . . . . . . . . . . . . . . 17 ((𝐸𝐹) ∈ V → ({𝑥, 𝑦} ⊆ (𝐸𝐹) → {𝑥, 𝑦} ≼ (𝐸𝐹)))
4038, 37, 39mpsyl 68 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ≼ (𝐸𝐹))
411, 2upgrle 26875 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (♯‘(𝐸𝐹)) ≤ 2)
4241adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘(𝐸𝐹)) ≤ 2)
43 eldifsni 4722 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → 𝑦𝑥)
4443ad2antll 727 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦𝑥)
4544necomd 3071 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑥𝑦)
46 hashprg 13757 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
4746el2v 3501 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)
4845, 47sylib 220 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘{𝑥, 𝑦}) = 2)
4942, 48breqtrrd 5094 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}))
50 prfi 8793 . . . . . . . . . . . . . . . . . 18 {𝑥, 𝑦} ∈ Fin
51 hashdom 13741 . . . . . . . . . . . . . . . . . 18 (((𝐸𝐹) ∈ Fin ∧ {𝑥, 𝑦} ∈ Fin) → ((♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}) ↔ (𝐸𝐹) ≼ {𝑥, 𝑦}))
5235, 50, 51sylancl 588 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → ((♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}) ↔ (𝐸𝐹) ≼ {𝑥, 𝑦}))
5349, 52mpbid 234 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ≼ {𝑥, 𝑦})
54 sbth 8637 . . . . . . . . . . . . . . . 16 (({𝑥, 𝑦} ≼ (𝐸𝐹) ∧ (𝐸𝐹) ≼ {𝑥, 𝑦}) → {𝑥, 𝑦} ≈ (𝐸𝐹))
5540, 53, 54syl2anc 586 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ≈ (𝐸𝐹))
56 fisseneq 8729 . . . . . . . . . . . . . . 15 (((𝐸𝐹) ∈ Fin ∧ {𝑥, 𝑦} ⊆ (𝐸𝐹) ∧ {𝑥, 𝑦} ≈ (𝐸𝐹)) → {𝑥, 𝑦} = (𝐸𝐹))
5735, 37, 55, 56syl3anc 1367 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} = (𝐸𝐹))
5857eqcomd 2827 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) = {𝑥, 𝑦})
5933, 58jca 514 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
6059expr 459 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → (𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦})))
6160eximdv 1918 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦})))
6261imp 409 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥})) → ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
63 df-rex 3144 . . . . . . . . 9 (∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
6462, 63sylibr 236 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥})) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6529, 64sylan2b 595 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) ≠ ∅) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6628, 65pm2.61dane 3104 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6715, 66jca 514 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
6867ex 415 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝑥 ∈ (𝐸𝐹) → (𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})))
6968eximdv 1918 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (∃𝑥 𝑥 ∈ (𝐸𝐹) → ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})))
705, 69mpd 15 . 2 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
71 df-rex 3144 . 2 (∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
7270, 71sylibr 236 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3016  wrex 3139  Vcvv 3494  cdif 3933  wss 3936  c0 4291  {csn 4567  {cpr 4569   class class class wbr 5066  dom cdm 5555   Fn wfn 6350  cfv 6355  cen 8506  cdom 8507  Fincfn 8509  cle 10676  2c2 11693  chash 13691  Vtxcvtx 26781  iEdgciedg 26782  UPGraphcupgr 26865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692  df-upgr 26867
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator