Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrgt2cycl Structured version   Visualization version   GIF version

Theorem usgrgt2cycl 32377
Description: A non-trivial cycle in a simple graph has a length greater than 2. (Contributed by BTernaryTau, 24-Sep-2023.)
Assertion
Ref Expression
usgrgt2cycl ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝐹))

Proof of Theorem usgrgt2cycl
StepHypRef Expression
1 cycliswlk 27579 . . . . . . . 8 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 wlkcl 27397 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
31, 2syl 17 . . . . . . 7 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
43nn0red 11957 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℝ)
54adantr 483 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℝ)
62nn0ge0d 11959 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → 0 ≤ (♯‘𝐹))
71, 6syl 17 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃 → 0 ≤ (♯‘𝐹))
87adantr 483 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 0 ≤ (♯‘𝐹))
9 relwlk 27407 . . . . . . . 8 Rel (Walks‘𝐺)
109brrelex1i 5608 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ V)
11 hasheq0 13725 . . . . . . . . 9 (𝐹 ∈ V → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅))
1211necon3bid 3060 . . . . . . . 8 (𝐹 ∈ V → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅))
1312bicomd 225 . . . . . . 7 (𝐹 ∈ V → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0))
141, 10, 133syl 18 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0))
1514biimpa 479 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0)
165, 8, 15ne0gt0d 10777 . . . 4 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 0 < (♯‘𝐹))
17163adant1 1126 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 0 < (♯‘𝐹))
18 usgrumgr 26964 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
19 umgrn1cycl 27585 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 1)
2018, 19sylan 582 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 1)
21203adant3 1128 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≠ 1)
22 0nn0 11913 . . . . . 6 0 ∈ ℕ0
23 nn0ltp1ne 32350 . . . . . 6 ((0 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0) → ((0 + 1) < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (0 + 1))))
2422, 3, 23sylancr 589 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 → ((0 + 1) < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (0 + 1))))
25 0p1e1 11760 . . . . . 6 (0 + 1) = 1
2625breq1i 5073 . . . . 5 ((0 + 1) < (♯‘𝐹) ↔ 1 < (♯‘𝐹))
2725neeq2i 3081 . . . . . 6 ((♯‘𝐹) ≠ (0 + 1) ↔ (♯‘𝐹) ≠ 1)
2827anbi2i 624 . . . . 5 ((0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (0 + 1)) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 1))
2924, 26, 283bitr3g 315 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (1 < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 1)))
30293ad2ant2 1130 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (1 < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 1)))
3117, 21, 30mpbir2and 711 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 1 < (♯‘𝐹))
32 usgrn2cycl 27587 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 2)
33323adant3 1128 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≠ 2)
34 df-2 11701 . . . . . 6 2 = (1 + 1)
3534breq1i 5073 . . . . 5 (2 < (♯‘𝐹) ↔ (1 + 1) < (♯‘𝐹))
36 1nn0 11914 . . . . . 6 1 ∈ ℕ0
37 nn0ltp1ne 32350 . . . . . 6 ((1 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0) → ((1 + 1) < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
3836, 3, 37sylancr 589 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 → ((1 + 1) < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
3935, 38syl5bb 285 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (2 < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
40393ad2ant2 1130 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (2 < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
4134neeq2i 3081 . . . 4 ((♯‘𝐹) ≠ 2 ↔ (♯‘𝐹) ≠ (1 + 1))
4241anbi2i 624 . . 3 ((1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 2) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1)))
4340, 42syl6bbr 291 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (2 < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 2)))
4431, 33, 43mpbir2and 711 1 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wne 3016  Vcvv 3494  c0 4291   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cle 10676  2c2 11693  0cn0 11898  chash 13691  UMGraphcumgr 26866  USGraphcusgr 26934  Walkscwlks 27378  Cyclesccycls 27566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-edg 26833  df-uhgr 26843  df-upgr 26867  df-umgr 26868  df-uspgr 26935  df-usgr 26936  df-wlks 27381  df-trls 27474  df-pths 27497  df-crcts 27567  df-cycls 27568
This theorem is referenced by:  usgrcyclgt2v  32378
  Copyright terms: Public domain W3C validator