MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrvd0nedg Structured version   Visualization version   GIF version

Theorem usgrvd0nedg 26309
Description: If a vertex in a simple graph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 16-Dec-2020.) (Proof shortened by AV, 23-Dec-2020.)
Hypotheses
Ref Expression
vtxdusgradjvtx.v 𝑉 = (Vtx‘𝐺)
vtxdusgradjvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgrvd0nedg ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (((VtxDeg‘𝐺)‘𝑈) = 0 → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
Distinct variable groups:   𝑣,𝐸   𝑣,𝐺   𝑣,𝑈   𝑣,𝑉

Proof of Theorem usgrvd0nedg
StepHypRef Expression
1 vtxdusgradjvtx.v . . . 4 𝑉 = (Vtx‘𝐺)
2 vtxdusgradjvtx.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2vtxdusgradjvtx 26308 . . 3 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = (#‘{𝑣𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸}))
43eqeq1d 2628 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (((VtxDeg‘𝐺)‘𝑈) = 0 ↔ (#‘{𝑣𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸}) = 0))
5 fvex 6160 . . . . . 6 (Vtx‘𝐺) ∈ V
61, 5eqeltri 2700 . . . . 5 𝑉 ∈ V
76rabex 4778 . . . 4 {𝑣𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸} ∈ V
8 hasheq0 13091 . . . 4 ({𝑣𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸} ∈ V → ((#‘{𝑣𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸}) = 0 ↔ {𝑣𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸} = ∅))
97, 8ax-mp 5 . . 3 ((#‘{𝑣𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸}) = 0 ↔ {𝑣𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸} = ∅)
10 rabeq0 3936 . . . 4 ({𝑣𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸} = ∅ ↔ ∀𝑣𝑉 ¬ {𝑈, 𝑣} ∈ 𝐸)
11 ralnex 2991 . . . . . 6 (∀𝑣𝑉 ¬ {𝑈, 𝑣} ∈ 𝐸 ↔ ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸)
1211biimpi 206 . . . . 5 (∀𝑣𝑉 ¬ {𝑈, 𝑣} ∈ 𝐸 → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸)
1312a1i 11 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (∀𝑣𝑉 ¬ {𝑈, 𝑣} ∈ 𝐸 → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
1410, 13syl5bi 232 . . 3 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ({𝑣𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸} = ∅ → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
159, 14syl5bi 232 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ((#‘{𝑣𝑉 ∣ {𝑈, 𝑣} ∈ 𝐸}) = 0 → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
164, 15sylbid 230 1 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (((VtxDeg‘𝐺)‘𝑈) = 0 → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  wrex 2913  {crab 2916  Vcvv 3191  c0 3896  {cpr 4155  cfv 5850  0cc0 9881  #chash 13054  Vtxcvtx 25769  Edgcedg 25834   USGraph cusgr 25932  VtxDegcvtxdg 26242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-n0 11238  df-xnn0 11309  df-z 11323  df-uz 11632  df-xadd 11891  df-fz 12266  df-hash 13055  df-edg 25835  df-uhgr 25844  df-ushgr 25845  df-upgr 25868  df-umgr 25869  df-uspgr 25933  df-usgr 25934  df-nbgr 26109  df-vtxdg 26243
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator