MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltweuz Structured version   Visualization version   GIF version

Theorem ltweuz 12954
Description: < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
ltweuz < We (ℤ𝐴)

Proof of Theorem ltweuz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 7239 . . . . 5 Ord ω
2 ordwe 5897 . . . . 5 (Ord ω → E We ω)
31, 2ax-mp 5 . . . 4 E We ω
4 rdgeq2 7677 . . . . . . . . 9 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) = rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)))
54reseq1d 5550 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω))
6 isoeq1 6730 . . . . . . . 8 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴))))
75, 6syl 17 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴))))
8 fveq2 6352 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → (ℤ𝐴) = (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))
9 isoeq5 6734 . . . . . . . 8 ((ℤ𝐴) = (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))))
108, 9syl 17 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℤ, 𝐴, 0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ𝐴)) ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))))
11 0z 11580 . . . . . . . . 9 0 ∈ ℤ
1211elimel 4294 . . . . . . . 8 if(𝐴 ∈ ℤ, 𝐴, 0) ∈ ℤ
13 eqid 2760 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω)
1412, 13om2uzisoi 12947 . . . . . . 7 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝐴 ∈ ℤ, 𝐴, 0)) ↾ ω) Isom E , < (ω, (ℤ‘if(𝐴 ∈ ℤ, 𝐴, 0)))
157, 10, 14dedth2v 4287 . . . . . 6 (𝐴 ∈ ℤ → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)))
16 isocnv 6743 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom E , < (ω, (ℤ𝐴)) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω))
1715, 16syl 17 . . . . 5 (𝐴 ∈ ℤ → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω))
18 dmres 5577 . . . . . . . 8 dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) = (ω ∩ dom rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴))
19 omex 8713 . . . . . . . . 9 ω ∈ V
2019inex1 4951 . . . . . . . 8 (ω ∩ dom rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴)) ∈ V
2118, 20eqeltri 2835 . . . . . . 7 dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) ∈ V
22 cnvimass 5643 . . . . . . 7 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ⊆ dom (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
2321, 22ssexi 4955 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V
2423ax-gen 1871 . . . . 5 𝑦((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V
25 isowe2 6763 . . . . 5 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) Isom < , E ((ℤ𝐴), ω) ∧ ∀𝑦((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) “ 𝑦) ∈ V) → ( E We ω → < We (ℤ𝐴)))
2617, 24, 25sylancl 697 . . . 4 (𝐴 ∈ ℤ → ( E We ω → < We (ℤ𝐴)))
273, 26mpi 20 . . 3 (𝐴 ∈ ℤ → < We (ℤ𝐴))
28 uzf 11882 . . . 4 :ℤ⟶𝒫 ℤ
2928fdmi 6213 . . 3 dom ℤ = ℤ
3027, 29eleq2s 2857 . 2 (𝐴 ∈ dom ℤ → < We (ℤ𝐴))
31 we0 5261 . . 3 < We ∅
32 ndmfv 6379 . . . 4 𝐴 ∈ dom ℤ → (ℤ𝐴) = ∅)
33 weeq2 5255 . . . 4 ((ℤ𝐴) = ∅ → ( < We (ℤ𝐴) ↔ < We ∅))
3432, 33syl 17 . . 3 𝐴 ∈ dom ℤ → ( < We (ℤ𝐴) ↔ < We ∅))
3531, 34mpbiri 248 . 2 𝐴 ∈ dom ℤ → < We (ℤ𝐴))
3630, 35pm2.61i 176 1 < We (ℤ𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wal 1630   = wceq 1632  wcel 2139  Vcvv 3340  cin 3714  c0 4058  ifcif 4230  𝒫 cpw 4302  cmpt 4881   E cep 5178   We wwe 5224  ccnv 5265  dom cdm 5266  cres 5268  cima 5269  Ord word 5883  cfv 6049   Isom wiso 6050  (class class class)co 6813  ωcom 7230  reccrdg 7674  0cc0 10128  1c1 10129   + caddc 10131   < clt 10266  cz 11569  cuz 11879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880
This theorem is referenced by:  ltwenn  12955  ltwefz  12956  uzsinds  12980  bpolylem  14978  ltbwe  19674  dyadmax  23566  omeiunle  41237
  Copyright terms: Public domain W3C validator