MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextsurj Structured version   Visualization version   GIF version

Theorem wwlksnextsurj 27678
Description: Lemma for wwlksnextbij 27680. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij0.e 𝐸 = (Edg‘𝐺)
wwlksnextbij0.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
wwlksnextbij0.r 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
wwlksnextbij0.f 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
Assertion
Ref Expression
wwlksnextsurj (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐹:𝐷onto𝑅)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊   𝑡,𝐷   𝑛,𝐸,𝑤   𝑡,𝑁,𝑤   𝑡,𝑅   𝑛,𝑉,𝑤   𝑛,𝑊   𝑡,𝑛,𝑁,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐸(𝑡)   𝐹(𝑤,𝑡,𝑛)   𝐺(𝑡,𝑛)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem wwlksnextsurj
Dummy variables 𝑖 𝑑 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlksnextbij0.v . . . 4 𝑉 = (Vtx‘𝐺)
21wwlknbp 27620 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
3 simp2 1133 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → 𝑁 ∈ ℕ0)
4 wwlksnextbij0.e . . . 4 𝐸 = (Edg‘𝐺)
5 wwlksnextbij0.d . . . 4 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
6 wwlksnextbij0.r . . . 4 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
7 wwlksnextbij0.f . . . 4 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
81, 4, 5, 6, 7wwlksnextfun 27676 . . 3 (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
92, 3, 83syl 18 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐹:𝐷𝑅)
10 preq2 4670 . . . . . 6 (𝑛 = 𝑟 → {(lastS‘𝑊), 𝑛} = {(lastS‘𝑊), 𝑟})
1110eleq1d 2897 . . . . 5 (𝑛 = 𝑟 → ({(lastS‘𝑊), 𝑛} ∈ 𝐸 ↔ {(lastS‘𝑊), 𝑟} ∈ 𝐸))
1211, 6elrab2 3683 . . . 4 (𝑟𝑅 ↔ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸))
131, 4wwlksnext 27671 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸) → (𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))
14133expb 1116 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → (𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))
15 s1cl 13956 . . . . . . . . . . . . . . . . . 18 (𝑟𝑉 → ⟨“𝑟”⟩ ∈ Word 𝑉)
16 pfxccat1 14064 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑟”⟩ ∈ Word 𝑉) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)) = 𝑊)
1715, 16sylan2 594 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑟𝑉) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)) = 𝑊)
1817ex 415 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word 𝑉 → (𝑟𝑉 → ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)) = 𝑊))
1918adantr 483 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑟𝑉 → ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)) = 𝑊))
20 oveq2 7164 . . . . . . . . . . . . . . . . . 18 ((𝑁 + 1) = (♯‘𝑊) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)))
2120eqcoms 2829 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = (𝑁 + 1) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)))
2221eqeq1d 2823 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = (𝑁 + 1) → (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ↔ ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)) = 𝑊))
2322adantl 484 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ↔ ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)) = 𝑊))
2419, 23sylibrd 261 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑟𝑉 → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊))
25243adant3 1128 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑟𝑉 → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊))
261, 4wwlknp 27621 . . . . . . . . . . . . 13 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
2725, 26syl11 33 . . . . . . . . . . . 12 (𝑟𝑉 → (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊))
2827adantr 483 . . . . . . . . . . 11 ((𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊))
2928impcom 410 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊)
30 lswccats1 13993 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉𝑟𝑉) → (lastS‘(𝑊 ++ ⟨“𝑟”⟩)) = 𝑟)
3130eqcomd 2827 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝑟𝑉) → 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩)))
3231ex 415 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝑉 → (𝑟𝑉𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))))
33323ad2ant3 1131 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑟𝑉𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))))
342, 33syl 17 . . . . . . . . . . . . . . 15 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑟𝑉𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))))
3534imp 409 . . . . . . . . . . . . . 14 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟𝑉) → 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩)))
3635preq2d 4676 . . . . . . . . . . . . 13 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟𝑉) → {(lastS‘𝑊), 𝑟} = {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))})
3736eleq1d 2897 . . . . . . . . . . . 12 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟𝑉) → ({(lastS‘𝑊), 𝑟} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸))
3837biimpd 231 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟𝑉) → ({(lastS‘𝑊), 𝑟} ∈ 𝐸 → {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸))
3938impr 457 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)
4014, 29, 39jca32 518 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)))
4133, 2syl11 33 . . . . . . . . . . 11 (𝑟𝑉 → (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))))
4241adantr 483 . . . . . . . . . 10 ((𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))))
4342impcom 410 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩)))
44 ovexd 7191 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → (𝑊 ++ ⟨“𝑟”⟩) ∈ V)
45 eleq1 2900 . . . . . . . . . . . . . . 15 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → (𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺)))
46 oveq1 7163 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → (𝑑 prefix (𝑁 + 1)) = ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)))
4746eqeq1d 2823 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → ((𝑑 prefix (𝑁 + 1)) = 𝑊 ↔ ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊))
48 fveq2 6670 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → (lastS‘𝑑) = (lastS‘(𝑊 ++ ⟨“𝑟”⟩)))
4948preq2d 4676 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → {(lastS‘𝑊), (lastS‘𝑑)} = {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))})
5049eleq1d 2897 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → ({(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸))
5147, 50anbi12d 632 . . . . . . . . . . . . . . 15 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → (((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) ↔ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)))
5245, 51anbi12d 632 . . . . . . . . . . . . . 14 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ↔ ((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸))))
5348eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → (𝑟 = (lastS‘𝑑) ↔ 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))))
5452, 53anbi12d 632 . . . . . . . . . . . . 13 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → (((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)) ↔ (((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩)))))
5554bicomd 225 . . . . . . . . . . . 12 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → ((((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))) ↔ ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑))))
5655adantl 484 . . . . . . . . . . 11 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) ∧ 𝑑 = (𝑊 ++ ⟨“𝑟”⟩)) → ((((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))) ↔ ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑))))
5756biimpd 231 . . . . . . . . . 10 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) ∧ 𝑑 = (𝑊 ++ ⟨“𝑟”⟩)) → ((((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))) → ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑))))
5844, 57spcimedv 3594 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ((((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))) → ∃𝑑((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑))))
5940, 43, 58mp2and 697 . . . . . . . 8 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)))
60 oveq1 7163 . . . . . . . . . . . . 13 (𝑤 = 𝑑 → (𝑤 prefix (𝑁 + 1)) = (𝑑 prefix (𝑁 + 1)))
6160eqeq1d 2823 . . . . . . . . . . . 12 (𝑤 = 𝑑 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑑 prefix (𝑁 + 1)) = 𝑊))
62 fveq2 6670 . . . . . . . . . . . . . 14 (𝑤 = 𝑑 → (lastS‘𝑤) = (lastS‘𝑑))
6362preq2d 4676 . . . . . . . . . . . . 13 (𝑤 = 𝑑 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑑)})
6463eleq1d 2897 . . . . . . . . . . . 12 (𝑤 = 𝑑 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸))
6561, 64anbi12d 632 . . . . . . . . . . 11 (𝑤 = 𝑑 → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)))
6665elrab 3680 . . . . . . . . . 10 (𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ↔ (𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)))
6766anbi1i 625 . . . . . . . . 9 ((𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∧ 𝑟 = (lastS‘𝑑)) ↔ ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)))
6867exbii 1848 . . . . . . . 8 (∃𝑑(𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∧ 𝑟 = (lastS‘𝑑)) ↔ ∃𝑑((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)))
6959, 68sylibr 236 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑(𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∧ 𝑟 = (lastS‘𝑑)))
70 df-rex 3144 . . . . . . 7 (∃𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}𝑟 = (lastS‘𝑑) ↔ ∃𝑑(𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∧ 𝑟 = (lastS‘𝑑)))
7169, 70sylibr 236 . . . . . 6 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}𝑟 = (lastS‘𝑑))
721, 4, 5wwlksnextwrd 27675 . . . . . . . 8 (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐷 = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
7372adantr 483 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → 𝐷 = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
7473rexeqdv 3416 . . . . . 6 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → (∃𝑑𝐷 𝑟 = (lastS‘𝑑) ↔ ∃𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}𝑟 = (lastS‘𝑑)))
7571, 74mpbird 259 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑𝐷 𝑟 = (lastS‘𝑑))
76 fveq2 6670 . . . . . . . 8 (𝑡 = 𝑑 → (lastS‘𝑡) = (lastS‘𝑑))
77 fvex 6683 . . . . . . . 8 (lastS‘𝑑) ∈ V
7876, 7, 77fvmpt 6768 . . . . . . 7 (𝑑𝐷 → (𝐹𝑑) = (lastS‘𝑑))
7978eqeq2d 2832 . . . . . 6 (𝑑𝐷 → (𝑟 = (𝐹𝑑) ↔ 𝑟 = (lastS‘𝑑)))
8079rexbiia 3246 . . . . 5 (∃𝑑𝐷 𝑟 = (𝐹𝑑) ↔ ∃𝑑𝐷 𝑟 = (lastS‘𝑑))
8175, 80sylibr 236 . . . 4 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑𝐷 𝑟 = (𝐹𝑑))
8212, 81sylan2b 595 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟𝑅) → ∃𝑑𝐷 𝑟 = (𝐹𝑑))
8382ralrimiva 3182 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∀𝑟𝑅𝑑𝐷 𝑟 = (𝐹𝑑))
84 dffo3 6868 . 2 (𝐹:𝐷onto𝑅 ↔ (𝐹:𝐷𝑅 ∧ ∀𝑟𝑅𝑑𝐷 𝑟 = (𝐹𝑑)))
859, 83, 84sylanbrc 585 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐹:𝐷onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  {cpr 4569  cmpt 5146  wf 6351  ontowfo 6353  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540  2c2 11693  0cn0 11898  ..^cfzo 13034  chash 13691  Word cword 13862  lastSclsw 13914   ++ cconcat 13922  ⟨“cs1 13949   prefix cpfx 14032  Vtxcvtx 26781  Edgcedg 26832   WWalksN cwwlksn 27604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-wwlks 27608  df-wwlksn 27609
This theorem is referenced by:  wwlksnextbij0  27679
  Copyright terms: Public domain W3C validator