Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrsclat Structured version   Visualization version   GIF version

Theorem xrsclat 29985
Description: The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018.)
Assertion
Ref Expression
xrsclat *𝑠 ∈ CLat

Proof of Theorem xrsclat
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrstos 29984 . . 3 *𝑠 ∈ Toset
2 tospos 29963 . . 3 (ℝ*𝑠 ∈ Toset → ℝ*𝑠 ∈ Poset)
31, 2ax-mp 5 . 2 *𝑠 ∈ Poset
4 xrsbas 19960 . . . . . 6 * = (Base‘ℝ*𝑠)
5 xrsle 19964 . . . . . 6 ≤ = (le‘ℝ*𝑠)
6 eqid 2756 . . . . . 6 (lub‘ℝ*𝑠) = (lub‘ℝ*𝑠)
7 biid 251 . . . . . 6 ((∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)) ↔ (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)))
84, 5, 6, 7, 2lubdm 17176 . . . . 5 (ℝ*𝑠 ∈ Toset → dom (lub‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐))})
91, 8ax-mp 5 . . . 4 dom (lub‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐))}
10 rabid2 3253 . . . . 5 (𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐))} ↔ ∀𝑥 ∈ 𝒫 ℝ*∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)))
11 selpw 4305 . . . . . 6 (𝑥 ∈ 𝒫 ℝ*𝑥 ⊆ ℝ*)
12 xrltso 12163 . . . . . . . . 9 < Or ℝ*
1312a1i 11 . . . . . . . 8 (𝑥 ⊆ ℝ* → < Or ℝ*)
14 xrsupss 12328 . . . . . . . 8 (𝑥 ⊆ ℝ* → ∃𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑)))
1513, 14supeu 8521 . . . . . . 7 (𝑥 ⊆ ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑)))
16 xrslt 29981 . . . . . . . . 9 < = (lt‘ℝ*𝑠)
171a1i 11 . . . . . . . . 9 (𝑥 ⊆ ℝ* → ℝ*𝑠 ∈ Toset)
18 id 22 . . . . . . . . 9 (𝑥 ⊆ ℝ*𝑥 ⊆ ℝ*)
194, 16, 17, 18, 5toslublem 29972 . . . . . . . 8 ((𝑥 ⊆ ℝ*𝑎 ∈ ℝ*) → ((∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)) ↔ (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑))))
2019reubidva 3260 . . . . . . 7 (𝑥 ⊆ ℝ* → (∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)) ↔ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑))))
2115, 20mpbird 247 . . . . . 6 (𝑥 ⊆ ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)))
2211, 21sylbi 207 . . . . 5 (𝑥 ∈ 𝒫 ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐)))
2310, 22mprgbir 3061 . . . 4 𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑏𝑎 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑏𝑐𝑎𝑐))}
249, 23eqtr4i 2781 . . 3 dom (lub‘ℝ*𝑠) = 𝒫 ℝ*
25 eqid 2756 . . . . . 6 (glb‘ℝ*𝑠) = (glb‘ℝ*𝑠)
26 biid 251 . . . . . 6 ((∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)) ↔ (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)))
274, 5, 25, 26, 2glbdm 17189 . . . . 5 (ℝ*𝑠 ∈ Toset → dom (glb‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎))})
281, 27ax-mp 5 . . . 4 dom (glb‘ℝ*𝑠) = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎))}
29 rabid2 3253 . . . . 5 (𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎))} ↔ ∀𝑥 ∈ 𝒫 ℝ*∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)))
30 cnvso 5831 . . . . . . . . . 10 ( < Or ℝ* < Or ℝ*)
3112, 30mpbi 220 . . . . . . . . 9 < Or ℝ*
3231a1i 11 . . . . . . . 8 (𝑥 ⊆ ℝ* < Or ℝ*)
33 xrinfmss2 12330 . . . . . . . 8 (𝑥 ⊆ ℝ* → ∃𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑)))
3432, 33supeu 8521 . . . . . . 7 (𝑥 ⊆ ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑)))
354, 16, 17, 18, 5tosglblem 29974 . . . . . . . 8 ((𝑥 ⊆ ℝ*𝑎 ∈ ℝ*) → ((∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)) ↔ (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑))))
3635reubidva 3260 . . . . . . 7 (𝑥 ⊆ ℝ* → (∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)) ↔ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑑𝑥 𝑏 < 𝑑))))
3734, 36mpbird 247 . . . . . 6 (𝑥 ⊆ ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)))
3811, 37sylbi 207 . . . . 5 (𝑥 ∈ 𝒫 ℝ* → ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎)))
3929, 38mprgbir 3061 . . . 4 𝒫 ℝ* = {𝑥 ∈ 𝒫 ℝ* ∣ ∃!𝑎 ∈ ℝ* (∀𝑏𝑥 𝑎𝑏 ∧ ∀𝑐 ∈ ℝ* (∀𝑏𝑥 𝑐𝑏𝑐𝑎))}
4028, 39eqtr4i 2781 . . 3 dom (glb‘ℝ*𝑠) = 𝒫 ℝ*
4124, 40pm3.2i 470 . 2 (dom (lub‘ℝ*𝑠) = 𝒫 ℝ* ∧ dom (glb‘ℝ*𝑠) = 𝒫 ℝ*)
424, 6, 25isclat 17306 . 2 (ℝ*𝑠 ∈ CLat ↔ (ℝ*𝑠 ∈ Poset ∧ (dom (lub‘ℝ*𝑠) = 𝒫 ℝ* ∧ dom (glb‘ℝ*𝑠) = 𝒫 ℝ*)))
433, 41, 42mpbir2an 993 1 *𝑠 ∈ CLat
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1628  wcel 2135  wral 3046  wrex 3047  ∃!wreu 3048  {crab 3050  wss 3711  𝒫 cpw 4298   class class class wbr 4800   Or wor 5182  ccnv 5261  dom cdm 5262  cfv 6045  *cxr 10261   < clt 10262  cle 10263  *𝑠cxrs 16358  Posetcpo 17137  lubclub 17139  glbcglb 17140  Tosetctos 17230  CLatccla 17304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-2 11267  df-3 11268  df-4 11269  df-5 11270  df-6 11271  df-7 11272  df-8 11273  df-9 11274  df-n0 11481  df-z 11566  df-dec 11682  df-uz 11876  df-fz 12516  df-struct 16057  df-ndx 16058  df-slot 16059  df-base 16061  df-plusg 16152  df-mulr 16153  df-tset 16158  df-ple 16159  df-ds 16162  df-xrs 16360  df-preset 17125  df-poset 17143  df-plt 17155  df-lub 17171  df-glb 17172  df-toset 17231  df-clat 17305
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator