![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0disj | GIF version |
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3485 | . . 3 ⊢ ∅ ⊆ {𝑥} | |
2 | 1 | rgenw 2549 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} |
3 | sndisj 4025 | . 2 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | |
4 | disjss2 4009 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥 ∈ 𝐴 {𝑥} → Disj 𝑥 ∈ 𝐴 ∅)) | |
5 | 2, 3, 4 | mp2 16 | 1 ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Colors of variables: wff set class |
Syntax hints: ∀wral 2472 ⊆ wss 3153 ∅c0 3446 {csn 3618 Disj wdisj 4006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rmo 2480 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 df-sn 3624 df-disj 4007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |