ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0disj GIF version

Theorem 0disj 3978
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
0disj Disj 𝑥𝐴

Proof of Theorem 0disj
StepHypRef Expression
1 0ss 3446 . . 3 ∅ ⊆ {𝑥}
21rgenw 2520 . 2 𝑥𝐴 ∅ ⊆ {𝑥}
3 sndisj 3977 . 2 Disj 𝑥𝐴 {𝑥}
4 disjss2 3961 . 2 (∀𝑥𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥𝐴 {𝑥} → Disj 𝑥𝐴 ∅))
52, 3, 4mp2 16 1 Disj 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wral 2443  wss 3115  c0 3408  {csn 3575  Disj wdisj 3958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rmo 2451  df-v 2727  df-dif 3117  df-in 3121  df-ss 3128  df-nul 3409  df-sn 3581  df-disj 3959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator