| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0disj | GIF version | ||
| Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| 0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3498 | . . 3 ⊢ ∅ ⊆ {𝑥} | |
| 2 | 1 | rgenw 2560 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} |
| 3 | sndisj 4039 | . 2 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | |
| 4 | disjss2 4023 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥 ∈ 𝐴 {𝑥} → Disj 𝑥 ∈ 𝐴 ∅)) | |
| 5 | 2, 3, 4 | mp2 16 | 1 ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
| Colors of variables: wff set class |
| Syntax hints: ∀wral 2483 ⊆ wss 3165 ∅c0 3459 {csn 3632 Disj wdisj 4020 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rmo 2491 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-nul 3460 df-sn 3638 df-disj 4021 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |