| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0disj | GIF version | ||
| Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| 0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3530 | . . 3 ⊢ ∅ ⊆ {𝑥} | |
| 2 | 1 | rgenw 2585 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} |
| 3 | sndisj 4078 | . 2 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | |
| 4 | disjss2 4061 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥 ∈ 𝐴 {𝑥} → Disj 𝑥 ∈ 𝐴 ∅)) | |
| 5 | 2, 3, 4 | mp2 16 | 1 ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
| Colors of variables: wff set class |
| Syntax hints: ∀wral 2508 ⊆ wss 3197 ∅c0 3491 {csn 3666 Disj wdisj 4058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rmo 2516 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-disj 4059 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |