Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0disj | GIF version |
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3453 | . . 3 ⊢ ∅ ⊆ {𝑥} | |
2 | 1 | rgenw 2525 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} |
3 | sndisj 3985 | . 2 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | |
4 | disjss2 3969 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥 ∈ 𝐴 {𝑥} → Disj 𝑥 ∈ 𝐴 ∅)) | |
5 | 2, 3, 4 | mp2 16 | 1 ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Colors of variables: wff set class |
Syntax hints: ∀wral 2448 ⊆ wss 3121 ∅c0 3414 {csn 3583 Disj wdisj 3966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rmo 2456 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-disj 3967 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |