Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0disj | GIF version |
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3433 | . . 3 ⊢ ∅ ⊆ {𝑥} | |
2 | 1 | rgenw 2512 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} |
3 | sndisj 3963 | . 2 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | |
4 | disjss2 3947 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥 ∈ 𝐴 {𝑥} → Disj 𝑥 ∈ 𝐴 ∅)) | |
5 | 2, 3, 4 | mp2 16 | 1 ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Colors of variables: wff set class |
Syntax hints: ∀wral 2435 ⊆ wss 3102 ∅c0 3395 {csn 3561 Disj wdisj 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rmo 2443 df-v 2714 df-dif 3104 df-in 3108 df-ss 3115 df-nul 3396 df-sn 3567 df-disj 3945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |