ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eu7 GIF version

Theorem 2eu7 2132
Description: Two equivalent expressions for double existential uniqueness. (Contributed by NM, 19-Feb-2005.)
Assertion
Ref Expression
2eu7 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑))

Proof of Theorem 2eu7
StepHypRef Expression
1 hbe1 1506 . . . 4 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
21hbeu 2059 . . 3 (∃!𝑦𝑥𝜑 → ∀𝑥∃!𝑦𝑥𝜑)
32euan 2094 . 2 (∃!𝑥(∃!𝑦𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦𝑥𝜑 ∧ ∃!𝑥𝑦𝜑))
4 ancom 266 . . . . 5 ((∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃𝑦𝜑 ∧ ∃𝑥𝜑))
54eubii 2047 . . . 4 (∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑦(∃𝑦𝜑 ∧ ∃𝑥𝜑))
6 hbe1 1506 . . . . 5 (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
76euan 2094 . . . 4 (∃!𝑦(∃𝑦𝜑 ∧ ∃𝑥𝜑) ↔ (∃𝑦𝜑 ∧ ∃!𝑦𝑥𝜑))
8 ancom 266 . . . 4 ((∃𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ (∃!𝑦𝑥𝜑 ∧ ∃𝑦𝜑))
95, 7, 83bitri 206 . . 3 (∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦𝑥𝜑 ∧ ∃𝑦𝜑))
109eubii 2047 . 2 (∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥(∃!𝑦𝑥𝜑 ∧ ∃𝑦𝜑))
11 ancom 266 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ (∃!𝑦𝑥𝜑 ∧ ∃!𝑥𝑦𝜑))
123, 10, 113bitr4ri 213 1 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1503  ∃!weu 2038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator