| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2eu7 | GIF version | ||
| Description: Two equivalent expressions for double existential uniqueness. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 2eu7 | ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1517 | . . . 4 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | hbeu 2074 | . . 3 ⊢ (∃!𝑦∃𝑥𝜑 → ∀𝑥∃!𝑦∃𝑥𝜑) |
| 3 | 2 | euan 2109 | . 2 ⊢ (∃!𝑥(∃!𝑦∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦∃𝑥𝜑 ∧ ∃!𝑥∃𝑦𝜑)) |
| 4 | ancom 266 | . . . . 5 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃𝑦𝜑 ∧ ∃𝑥𝜑)) | |
| 5 | 4 | eubii 2062 | . . . 4 ⊢ (∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑦(∃𝑦𝜑 ∧ ∃𝑥𝜑)) |
| 6 | hbe1 1517 | . . . . 5 ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) | |
| 7 | 6 | euan 2109 | . . . 4 ⊢ (∃!𝑦(∃𝑦𝜑 ∧ ∃𝑥𝜑) ↔ (∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑)) |
| 8 | ancom 266 | . . . 4 ⊢ ((∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃!𝑦∃𝑥𝜑 ∧ ∃𝑦𝜑)) | |
| 9 | 5, 7, 8 | 3bitri 206 | . . 3 ⊢ (∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦∃𝑥𝜑 ∧ ∃𝑦𝜑)) |
| 10 | 9 | eubii 2062 | . 2 ⊢ (∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥(∃!𝑦∃𝑥𝜑 ∧ ∃𝑦𝜑)) |
| 11 | ancom 266 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃!𝑦∃𝑥𝜑 ∧ ∃!𝑥∃𝑦𝜑)) | |
| 12 | 3, 10, 11 | 3bitr4ri 213 | 1 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1514 ∃!weu 2053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |