| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xmetxp | Unicode version | ||
| Description: The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.) | 
| Ref | Expression | 
|---|---|
| xmetxp.p | 
 | 
| xmetxp.1 | 
 | 
| xmetxp.2 | 
 | 
| Ref | Expression | 
|---|---|
| xmetxp | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xmetxp.1 | 
. . . 4
 | |
| 2 | eqid 2196 | 
. . . . 5
 | |
| 3 | 2 | mopnm 14684 | 
. . . 4
 | 
| 4 | 1, 3 | syl 14 | 
. . 3
 | 
| 5 | xmetxp.2 | 
. . . 4
 | |
| 6 | eqid 2196 | 
. . . . 5
 | |
| 7 | 6 | mopnm 14684 | 
. . . 4
 | 
| 8 | 5, 7 | syl 14 | 
. . 3
 | 
| 9 | xpexg 4777 | 
. . 3
 | |
| 10 | 4, 8, 9 | syl2anc 411 | 
. 2
 | 
| 11 | 1 | adantr 276 | 
. . . . . 6
 | 
| 12 | xp1st 6223 | 
. . . . . . 7
 | |
| 13 | 12 | ad2antrl 490 | 
. . . . . 6
 | 
| 14 | xp1st 6223 | 
. . . . . . 7
 | |
| 15 | 14 | ad2antll 491 | 
. . . . . 6
 | 
| 16 | xmetcl 14588 | 
. . . . . 6
 | |
| 17 | 11, 13, 15, 16 | syl3anc 1249 | 
. . . . 5
 | 
| 18 | 5 | adantr 276 | 
. . . . . 6
 | 
| 19 | xp2nd 6224 | 
. . . . . . 7
 | |
| 20 | 19 | ad2antrl 490 | 
. . . . . 6
 | 
| 21 | xp2nd 6224 | 
. . . . . . 7
 | |
| 22 | 21 | ad2antll 491 | 
. . . . . 6
 | 
| 23 | xmetcl 14588 | 
. . . . . 6
 | |
| 24 | 18, 20, 22, 23 | syl3anc 1249 | 
. . . . 5
 | 
| 25 | xrmaxcl 11417 | 
. . . . 5
 | |
| 26 | 17, 24, 25 | syl2anc 411 | 
. . . 4
 | 
| 27 | 26 | ralrimivva 2579 | 
. . 3
 | 
| 28 | xmetxp.p | 
. . . . 5
 | |
| 29 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 30 | 29 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 31 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 32 | 31 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 33 | 30, 32 | preq12d 3707 | 
. . . . . . 7
 | 
| 34 | 33 | supeq1d 7053 | 
. . . . . 6
 | 
| 35 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 36 | 35 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 37 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 38 | 37 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 39 | 36, 38 | preq12d 3707 | 
. . . . . . 7
 | 
| 40 | 39 | supeq1d 7053 | 
. . . . . 6
 | 
| 41 | 34, 40 | cbvmpov 6002 | 
. . . . 5
 | 
| 42 | 28, 41 | eqtri 2217 | 
. . . 4
 | 
| 43 | 42 | fmpo 6259 | 
. . 3
 | 
| 44 | 27, 43 | sylib 122 | 
. 2
 | 
| 45 | simprl 529 | 
. . . . . . . 8
 | |
| 46 | simprr 531 | 
. . . . . . . 8
 | |
| 47 | 34, 40, 28 | ovmpog 6057 | 
. . . . . . . 8
 | 
| 48 | 45, 46, 26, 47 | syl3anc 1249 | 
. . . . . . 7
 | 
| 49 | 48, 26 | eqeltrd 2273 | 
. . . . . 6
 | 
| 50 | 0xr 8073 | 
. . . . . . 7
 | |
| 51 | 50 | a1i 9 | 
. . . . . 6
 | 
| 52 | xrletri3 9879 | 
. . . . . 6
 | |
| 53 | 49, 51, 52 | syl2anc 411 | 
. . . . 5
 | 
| 54 | xmetge0 14601 | 
. . . . . . . . 9
 | |
| 55 | 11, 13, 15, 54 | syl3anc 1249 | 
. . . . . . . 8
 | 
| 56 | xrmax1sup 11418 | 
. . . . . . . . 9
 | |
| 57 | 17, 24, 56 | syl2anc 411 | 
. . . . . . . 8
 | 
| 58 | 51, 17, 26, 55, 57 | xrletrd 9887 | 
. . . . . . 7
 | 
| 59 | 58, 48 | breqtrrd 4061 | 
. . . . . 6
 | 
| 60 | 59 | biantrud 304 | 
. . . . 5
 | 
| 61 | 53, 60 | bitr4d 191 | 
. . . 4
 | 
| 62 | 48 | breq1d 4043 | 
. . . 4
 | 
| 63 | xrmaxlesup 11424 | 
. . . . 5
 | |
| 64 | 17, 24, 51, 63 | syl3anc 1249 | 
. . . 4
 | 
| 65 | 61, 62, 64 | 3bitrd 214 | 
. . 3
 | 
| 66 | 55 | biantrud 304 | 
. . . . 5
 | 
| 67 | xrletri3 9879 | 
. . . . . 6
 | |
| 68 | 17, 51, 67 | syl2anc 411 | 
. . . . 5
 | 
| 69 | 66, 68 | bitr4d 191 | 
. . . 4
 | 
| 70 | xmetge0 14601 | 
. . . . . . 7
 | |
| 71 | 18, 20, 22, 70 | syl3anc 1249 | 
. . . . . 6
 | 
| 72 | 71 | biantrud 304 | 
. . . . 5
 | 
| 73 | xrletri3 9879 | 
. . . . . 6
 | |
| 74 | 24, 51, 73 | syl2anc 411 | 
. . . . 5
 | 
| 75 | 72, 74 | bitr4d 191 | 
. . . 4
 | 
| 76 | 69, 75 | anbi12d 473 | 
. . 3
 | 
| 77 | xmeteq0 14595 | 
. . . . . 6
 | |
| 78 | 11, 13, 15, 77 | syl3anc 1249 | 
. . . . 5
 | 
| 79 | xmeteq0 14595 | 
. . . . . 6
 | |
| 80 | 18, 20, 22, 79 | syl3anc 1249 | 
. . . . 5
 | 
| 81 | 78, 80 | anbi12d 473 | 
. . . 4
 | 
| 82 | xpopth 6234 | 
. . . . 5
 | |
| 83 | 82 | adantl 277 | 
. . . 4
 | 
| 84 | 81, 83 | bitrd 188 | 
. . 3
 | 
| 85 | 65, 76, 84 | 3bitrd 214 | 
. 2
 | 
| 86 | 48 | 3adantr3 1160 | 
. . 3
 | 
| 87 | 17 | 3adantr3 1160 | 
. . . . 5
 | 
| 88 | 1 | adantr 276 | 
. . . . . . 7
 | 
| 89 | simpr3 1007 | 
. . . . . . . 8
 | |
| 90 | xp1st 6223 | 
. . . . . . . 8
 | |
| 91 | 89, 90 | syl 14 | 
. . . . . . 7
 | 
| 92 | simpr1 1005 | 
. . . . . . . 8
 | |
| 93 | 92, 12 | syl 14 | 
. . . . . . 7
 | 
| 94 | xmetcl 14588 | 
. . . . . . 7
 | |
| 95 | 88, 91, 93, 94 | syl3anc 1249 | 
. . . . . 6
 | 
| 96 | 15 | 3adantr3 1160 | 
. . . . . . 7
 | 
| 97 | xmetcl 14588 | 
. . . . . . 7
 | |
| 98 | 88, 91, 96, 97 | syl3anc 1249 | 
. . . . . 6
 | 
| 99 | 95, 98 | xaddcld 9959 | 
. . . . 5
 | 
| 100 | 5 | adantr 276 | 
. . . . . . . . . 10
 | 
| 101 | xp2nd 6224 | 
. . . . . . . . . . 11
 | |
| 102 | 89, 101 | syl 14 | 
. . . . . . . . . 10
 | 
| 103 | 92, 19 | syl 14 | 
. . . . . . . . . 10
 | 
| 104 | xmetcl 14588 | 
. . . . . . . . . 10
 | |
| 105 | 100, 102, 103, 104 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 106 | xrmaxcl 11417 | 
. . . . . . . . 9
 | |
| 107 | 95, 105, 106 | syl2anc 411 | 
. . . . . . . 8
 | 
| 108 | fveq2 5558 | 
. . . . . . . . . . . 12
 | |
| 109 | fveq2 5558 | 
. . . . . . . . . . . 12
 | |
| 110 | 108, 109 | oveqan12d 5941 | 
. . . . . . . . . . 11
 | 
| 111 | fveq2 5558 | 
. . . . . . . . . . . 12
 | |
| 112 | fveq2 5558 | 
. . . . . . . . . . . 12
 | |
| 113 | 111, 112 | oveqan12d 5941 | 
. . . . . . . . . . 11
 | 
| 114 | 110, 113 | preq12d 3707 | 
. . . . . . . . . 10
 | 
| 115 | 114 | supeq1d 7053 | 
. . . . . . . . 9
 | 
| 116 | 115, 28 | ovmpoga 6052 | 
. . . . . . . 8
 | 
| 117 | 89, 92, 107, 116 | syl3anc 1249 | 
. . . . . . 7
 | 
| 118 | 117, 107 | eqeltrd 2273 | 
. . . . . 6
 | 
| 119 | simpr2 1006 | 
. . . . . . . 8
 | |
| 120 | 22 | 3adantr3 1160 | 
. . . . . . . . . 10
 | 
| 121 | xmetcl 14588 | 
. . . . . . . . . 10
 | |
| 122 | 100, 102, 120, 121 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 123 | xrmaxcl 11417 | 
. . . . . . . . 9
 | |
| 124 | 98, 122, 123 | syl2anc 411 | 
. . . . . . . 8
 | 
| 125 | 108, 35 | oveqan12d 5941 | 
. . . . . . . . . . 11
 | 
| 126 | 111, 37 | oveqan12d 5941 | 
. . . . . . . . . . 11
 | 
| 127 | 125, 126 | preq12d 3707 | 
. . . . . . . . . 10
 | 
| 128 | 127 | supeq1d 7053 | 
. . . . . . . . 9
 | 
| 129 | 128, 28 | ovmpoga 6052 | 
. . . . . . . 8
 | 
| 130 | 89, 119, 124, 129 | syl3anc 1249 | 
. . . . . . 7
 | 
| 131 | 130, 124 | eqeltrd 2273 | 
. . . . . 6
 | 
| 132 | 118, 131 | xaddcld 9959 | 
. . . . 5
 | 
| 133 | xmettri2 14597 | 
. . . . . 6
 | |
| 134 | 88, 91, 93, 96, 133 | syl13anc 1251 | 
. . . . 5
 | 
| 135 | xrmax1sup 11418 | 
. . . . . . . 8
 | |
| 136 | 95, 105, 135 | syl2anc 411 | 
. . . . . . 7
 | 
| 137 | 136, 117 | breqtrrd 4061 | 
. . . . . 6
 | 
| 138 | xrmax1sup 11418 | 
. . . . . . . 8
 | |
| 139 | 98, 122, 138 | syl2anc 411 | 
. . . . . . 7
 | 
| 140 | 139, 130 | breqtrrd 4061 | 
. . . . . 6
 | 
| 141 | xle2add 9954 | 
. . . . . . 7
 | |
| 142 | 95, 98, 118, 131, 141 | syl22anc 1250 | 
. . . . . 6
 | 
| 143 | 137, 140, 142 | mp2and 433 | 
. . . . 5
 | 
| 144 | 87, 99, 132, 134, 143 | xrletrd 9887 | 
. . . 4
 | 
| 145 | 24 | 3adantr3 1160 | 
. . . . 5
 | 
| 146 | 105, 122 | xaddcld 9959 | 
. . . . 5
 | 
| 147 | xmettri2 14597 | 
. . . . . 6
 | |
| 148 | 100, 102, 103, 120, 147 | syl13anc 1251 | 
. . . . 5
 | 
| 149 | xrmax2sup 11419 | 
. . . . . . . 8
 | |
| 150 | 95, 105, 149 | syl2anc 411 | 
. . . . . . 7
 | 
| 151 | 150, 117 | breqtrrd 4061 | 
. . . . . 6
 | 
| 152 | xrmax2sup 11419 | 
. . . . . . . 8
 | |
| 153 | 98, 122, 152 | syl2anc 411 | 
. . . . . . 7
 | 
| 154 | 153, 130 | breqtrrd 4061 | 
. . . . . 6
 | 
| 155 | xle2add 9954 | 
. . . . . . 7
 | |
| 156 | 105, 122, 118, 131, 155 | syl22anc 1250 | 
. . . . . 6
 | 
| 157 | 151, 154, 156 | mp2and 433 | 
. . . . 5
 | 
| 158 | 145, 146, 132, 148, 157 | xrletrd 9887 | 
. . . 4
 | 
| 159 | xrmaxlesup 11424 | 
. . . . 5
 | |
| 160 | 87, 145, 132, 159 | syl3anc 1249 | 
. . . 4
 | 
| 161 | 144, 158, 160 | mpbir2and 946 | 
. . 3
 | 
| 162 | 86, 161 | eqbrtrd 4055 | 
. 2
 | 
| 163 | 10, 44, 85, 162 | isxmetd 14583 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 | 
| This theorem is referenced by: xmetxpbl 14744 xmettxlem 14745 xmettx 14746 txmetcnp 14754 | 
| Copyright terms: Public domain | W3C validator |