Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmetxp | Unicode version |
Description: The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.) |
Ref | Expression |
---|---|
xmetxp.p | |
xmetxp.1 | |
xmetxp.2 |
Ref | Expression |
---|---|
xmetxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetxp.1 | . . . 4 | |
2 | eqid 2157 | . . . . 5 | |
3 | 2 | mopnm 12819 | . . . 4 |
4 | 1, 3 | syl 14 | . . 3 |
5 | xmetxp.2 | . . . 4 | |
6 | eqid 2157 | . . . . 5 | |
7 | 6 | mopnm 12819 | . . . 4 |
8 | 5, 7 | syl 14 | . . 3 |
9 | xpexg 4699 | . . 3 | |
10 | 4, 8, 9 | syl2anc 409 | . 2 |
11 | 1 | adantr 274 | . . . . . 6 |
12 | xp1st 6110 | . . . . . . 7 | |
13 | 12 | ad2antrl 482 | . . . . . 6 |
14 | xp1st 6110 | . . . . . . 7 | |
15 | 14 | ad2antll 483 | . . . . . 6 |
16 | xmetcl 12723 | . . . . . 6 | |
17 | 11, 13, 15, 16 | syl3anc 1220 | . . . . 5 |
18 | 5 | adantr 274 | . . . . . 6 |
19 | xp2nd 6111 | . . . . . . 7 | |
20 | 19 | ad2antrl 482 | . . . . . 6 |
21 | xp2nd 6111 | . . . . . . 7 | |
22 | 21 | ad2antll 483 | . . . . . 6 |
23 | xmetcl 12723 | . . . . . 6 | |
24 | 18, 20, 22, 23 | syl3anc 1220 | . . . . 5 |
25 | xrmaxcl 11142 | . . . . 5 | |
26 | 17, 24, 25 | syl2anc 409 | . . . 4 |
27 | 26 | ralrimivva 2539 | . . 3 |
28 | xmetxp.p | . . . . 5 | |
29 | fveq2 5467 | . . . . . . . . 9 | |
30 | 29 | oveq1d 5836 | . . . . . . . 8 |
31 | fveq2 5467 | . . . . . . . . 9 | |
32 | 31 | oveq1d 5836 | . . . . . . . 8 |
33 | 30, 32 | preq12d 3644 | . . . . . . 7 |
34 | 33 | supeq1d 6927 | . . . . . 6 |
35 | fveq2 5467 | . . . . . . . . 9 | |
36 | 35 | oveq2d 5837 | . . . . . . . 8 |
37 | fveq2 5467 | . . . . . . . . 9 | |
38 | 37 | oveq2d 5837 | . . . . . . . 8 |
39 | 36, 38 | preq12d 3644 | . . . . . . 7 |
40 | 39 | supeq1d 6927 | . . . . . 6 |
41 | 34, 40 | cbvmpov 5898 | . . . . 5 |
42 | 28, 41 | eqtri 2178 | . . . 4 |
43 | 42 | fmpo 6146 | . . 3 |
44 | 27, 43 | sylib 121 | . 2 |
45 | simprl 521 | . . . . . . . 8 | |
46 | simprr 522 | . . . . . . . 8 | |
47 | 34, 40, 28 | ovmpog 5952 | . . . . . . . 8 |
48 | 45, 46, 26, 47 | syl3anc 1220 | . . . . . . 7 |
49 | 48, 26 | eqeltrd 2234 | . . . . . 6 |
50 | 0xr 7918 | . . . . . . 7 | |
51 | 50 | a1i 9 | . . . . . 6 |
52 | xrletri3 9702 | . . . . . 6 | |
53 | 49, 51, 52 | syl2anc 409 | . . . . 5 |
54 | xmetge0 12736 | . . . . . . . . 9 | |
55 | 11, 13, 15, 54 | syl3anc 1220 | . . . . . . . 8 |
56 | xrmax1sup 11143 | . . . . . . . . 9 | |
57 | 17, 24, 56 | syl2anc 409 | . . . . . . . 8 |
58 | 51, 17, 26, 55, 57 | xrletrd 9709 | . . . . . . 7 |
59 | 58, 48 | breqtrrd 3992 | . . . . . 6 |
60 | 59 | biantrud 302 | . . . . 5 |
61 | 53, 60 | bitr4d 190 | . . . 4 |
62 | 48 | breq1d 3975 | . . . 4 |
63 | xrmaxlesup 11149 | . . . . 5 | |
64 | 17, 24, 51, 63 | syl3anc 1220 | . . . 4 |
65 | 61, 62, 64 | 3bitrd 213 | . . 3 |
66 | 55 | biantrud 302 | . . . . 5 |
67 | xrletri3 9702 | . . . . . 6 | |
68 | 17, 51, 67 | syl2anc 409 | . . . . 5 |
69 | 66, 68 | bitr4d 190 | . . . 4 |
70 | xmetge0 12736 | . . . . . . 7 | |
71 | 18, 20, 22, 70 | syl3anc 1220 | . . . . . 6 |
72 | 71 | biantrud 302 | . . . . 5 |
73 | xrletri3 9702 | . . . . . 6 | |
74 | 24, 51, 73 | syl2anc 409 | . . . . 5 |
75 | 72, 74 | bitr4d 190 | . . . 4 |
76 | 69, 75 | anbi12d 465 | . . 3 |
77 | xmeteq0 12730 | . . . . . 6 | |
78 | 11, 13, 15, 77 | syl3anc 1220 | . . . . 5 |
79 | xmeteq0 12730 | . . . . . 6 | |
80 | 18, 20, 22, 79 | syl3anc 1220 | . . . . 5 |
81 | 78, 80 | anbi12d 465 | . . . 4 |
82 | xpopth 6121 | . . . . 5 | |
83 | 82 | adantl 275 | . . . 4 |
84 | 81, 83 | bitrd 187 | . . 3 |
85 | 65, 76, 84 | 3bitrd 213 | . 2 |
86 | 48 | 3adantr3 1143 | . . 3 |
87 | 17 | 3adantr3 1143 | . . . . 5 |
88 | 1 | adantr 274 | . . . . . . 7 |
89 | simpr3 990 | . . . . . . . 8 | |
90 | xp1st 6110 | . . . . . . . 8 | |
91 | 89, 90 | syl 14 | . . . . . . 7 |
92 | simpr1 988 | . . . . . . . 8 | |
93 | 92, 12 | syl 14 | . . . . . . 7 |
94 | xmetcl 12723 | . . . . . . 7 | |
95 | 88, 91, 93, 94 | syl3anc 1220 | . . . . . 6 |
96 | 15 | 3adantr3 1143 | . . . . . . 7 |
97 | xmetcl 12723 | . . . . . . 7 | |
98 | 88, 91, 96, 97 | syl3anc 1220 | . . . . . 6 |
99 | 95, 98 | xaddcld 9781 | . . . . 5 |
100 | 5 | adantr 274 | . . . . . . . . . 10 |
101 | xp2nd 6111 | . . . . . . . . . . 11 | |
102 | 89, 101 | syl 14 | . . . . . . . . . 10 |
103 | 92, 19 | syl 14 | . . . . . . . . . 10 |
104 | xmetcl 12723 | . . . . . . . . . 10 | |
105 | 100, 102, 103, 104 | syl3anc 1220 | . . . . . . . . 9 |
106 | xrmaxcl 11142 | . . . . . . . . 9 | |
107 | 95, 105, 106 | syl2anc 409 | . . . . . . . 8 |
108 | fveq2 5467 | . . . . . . . . . . . 12 | |
109 | fveq2 5467 | . . . . . . . . . . . 12 | |
110 | 108, 109 | oveqan12d 5840 | . . . . . . . . . . 11 |
111 | fveq2 5467 | . . . . . . . . . . . 12 | |
112 | fveq2 5467 | . . . . . . . . . . . 12 | |
113 | 111, 112 | oveqan12d 5840 | . . . . . . . . . . 11 |
114 | 110, 113 | preq12d 3644 | . . . . . . . . . 10 |
115 | 114 | supeq1d 6927 | . . . . . . . . 9 |
116 | 115, 28 | ovmpoga 5947 | . . . . . . . 8 |
117 | 89, 92, 107, 116 | syl3anc 1220 | . . . . . . 7 |
118 | 117, 107 | eqeltrd 2234 | . . . . . 6 |
119 | simpr2 989 | . . . . . . . 8 | |
120 | 22 | 3adantr3 1143 | . . . . . . . . . 10 |
121 | xmetcl 12723 | . . . . . . . . . 10 | |
122 | 100, 102, 120, 121 | syl3anc 1220 | . . . . . . . . 9 |
123 | xrmaxcl 11142 | . . . . . . . . 9 | |
124 | 98, 122, 123 | syl2anc 409 | . . . . . . . 8 |
125 | 108, 35 | oveqan12d 5840 | . . . . . . . . . . 11 |
126 | 111, 37 | oveqan12d 5840 | . . . . . . . . . . 11 |
127 | 125, 126 | preq12d 3644 | . . . . . . . . . 10 |
128 | 127 | supeq1d 6927 | . . . . . . . . 9 |
129 | 128, 28 | ovmpoga 5947 | . . . . . . . 8 |
130 | 89, 119, 124, 129 | syl3anc 1220 | . . . . . . 7 |
131 | 130, 124 | eqeltrd 2234 | . . . . . 6 |
132 | 118, 131 | xaddcld 9781 | . . . . 5 |
133 | xmettri2 12732 | . . . . . 6 | |
134 | 88, 91, 93, 96, 133 | syl13anc 1222 | . . . . 5 |
135 | xrmax1sup 11143 | . . . . . . . 8 | |
136 | 95, 105, 135 | syl2anc 409 | . . . . . . 7 |
137 | 136, 117 | breqtrrd 3992 | . . . . . 6 |
138 | xrmax1sup 11143 | . . . . . . . 8 | |
139 | 98, 122, 138 | syl2anc 409 | . . . . . . 7 |
140 | 139, 130 | breqtrrd 3992 | . . . . . 6 |
141 | xle2add 9776 | . . . . . . 7 | |
142 | 95, 98, 118, 131, 141 | syl22anc 1221 | . . . . . 6 |
143 | 137, 140, 142 | mp2and 430 | . . . . 5 |
144 | 87, 99, 132, 134, 143 | xrletrd 9709 | . . . 4 |
145 | 24 | 3adantr3 1143 | . . . . 5 |
146 | 105, 122 | xaddcld 9781 | . . . . 5 |
147 | xmettri2 12732 | . . . . . 6 | |
148 | 100, 102, 103, 120, 147 | syl13anc 1222 | . . . . 5 |
149 | xrmax2sup 11144 | . . . . . . . 8 | |
150 | 95, 105, 149 | syl2anc 409 | . . . . . . 7 |
151 | 150, 117 | breqtrrd 3992 | . . . . . 6 |
152 | xrmax2sup 11144 | . . . . . . . 8 | |
153 | 98, 122, 152 | syl2anc 409 | . . . . . . 7 |
154 | 153, 130 | breqtrrd 3992 | . . . . . 6 |
155 | xle2add 9776 | . . . . . . 7 | |
156 | 105, 122, 118, 131, 155 | syl22anc 1221 | . . . . . 6 |
157 | 151, 154, 156 | mp2and 430 | . . . . 5 |
158 | 145, 146, 132, 148, 157 | xrletrd 9709 | . . . 4 |
159 | xrmaxlesup 11149 | . . . . 5 | |
160 | 87, 145, 132, 159 | syl3anc 1220 | . . . 4 |
161 | 144, 158, 160 | mpbir2and 929 | . . 3 |
162 | 86, 161 | eqbrtrd 3986 | . 2 |
163 | 10, 44, 85, 162 | isxmetd 12718 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 wral 2435 cvv 2712 cpr 3561 class class class wbr 3965 cxp 4583 wf 5165 cfv 5169 (class class class)co 5821 cmpo 5823 c1st 6083 c2nd 6084 csup 6922 cc0 7726 cxr 7905 clt 7906 cle 7907 cxad 9670 cxmet 12351 cmopn 12356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 ax-arch 7845 ax-caucvg 7846 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-isom 5178 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-frec 6335 df-map 6592 df-sup 6924 df-inf 6925 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 df-inn 8828 df-2 8886 df-3 8887 df-4 8888 df-n0 9085 df-z 9162 df-uz 9434 df-q 9522 df-rp 9554 df-xneg 9672 df-xadd 9673 df-seqfrec 10338 df-exp 10412 df-cj 10735 df-re 10736 df-im 10737 df-rsqrt 10891 df-abs 10892 df-topgen 12343 df-psmet 12358 df-xmet 12359 df-bl 12361 df-mopn 12362 df-top 12367 df-topon 12380 df-bases 12412 |
This theorem is referenced by: xmetxpbl 12879 xmettxlem 12880 xmettx 12881 txmetcnp 12889 |
Copyright terms: Public domain | W3C validator |