Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmetxp | Unicode version |
Description: The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.) |
Ref | Expression |
---|---|
xmetxp.p | |
xmetxp.1 | |
xmetxp.2 |
Ref | Expression |
---|---|
xmetxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetxp.1 | . . . 4 | |
2 | eqid 2170 | . . . . 5 | |
3 | 2 | mopnm 13242 | . . . 4 |
4 | 1, 3 | syl 14 | . . 3 |
5 | xmetxp.2 | . . . 4 | |
6 | eqid 2170 | . . . . 5 | |
7 | 6 | mopnm 13242 | . . . 4 |
8 | 5, 7 | syl 14 | . . 3 |
9 | xpexg 4725 | . . 3 | |
10 | 4, 8, 9 | syl2anc 409 | . 2 |
11 | 1 | adantr 274 | . . . . . 6 |
12 | xp1st 6144 | . . . . . . 7 | |
13 | 12 | ad2antrl 487 | . . . . . 6 |
14 | xp1st 6144 | . . . . . . 7 | |
15 | 14 | ad2antll 488 | . . . . . 6 |
16 | xmetcl 13146 | . . . . . 6 | |
17 | 11, 13, 15, 16 | syl3anc 1233 | . . . . 5 |
18 | 5 | adantr 274 | . . . . . 6 |
19 | xp2nd 6145 | . . . . . . 7 | |
20 | 19 | ad2antrl 487 | . . . . . 6 |
21 | xp2nd 6145 | . . . . . . 7 | |
22 | 21 | ad2antll 488 | . . . . . 6 |
23 | xmetcl 13146 | . . . . . 6 | |
24 | 18, 20, 22, 23 | syl3anc 1233 | . . . . 5 |
25 | xrmaxcl 11215 | . . . . 5 | |
26 | 17, 24, 25 | syl2anc 409 | . . . 4 |
27 | 26 | ralrimivva 2552 | . . 3 |
28 | xmetxp.p | . . . . 5 | |
29 | fveq2 5496 | . . . . . . . . 9 | |
30 | 29 | oveq1d 5868 | . . . . . . . 8 |
31 | fveq2 5496 | . . . . . . . . 9 | |
32 | 31 | oveq1d 5868 | . . . . . . . 8 |
33 | 30, 32 | preq12d 3668 | . . . . . . 7 |
34 | 33 | supeq1d 6964 | . . . . . 6 |
35 | fveq2 5496 | . . . . . . . . 9 | |
36 | 35 | oveq2d 5869 | . . . . . . . 8 |
37 | fveq2 5496 | . . . . . . . . 9 | |
38 | 37 | oveq2d 5869 | . . . . . . . 8 |
39 | 36, 38 | preq12d 3668 | . . . . . . 7 |
40 | 39 | supeq1d 6964 | . . . . . 6 |
41 | 34, 40 | cbvmpov 5933 | . . . . 5 |
42 | 28, 41 | eqtri 2191 | . . . 4 |
43 | 42 | fmpo 6180 | . . 3 |
44 | 27, 43 | sylib 121 | . 2 |
45 | simprl 526 | . . . . . . . 8 | |
46 | simprr 527 | . . . . . . . 8 | |
47 | 34, 40, 28 | ovmpog 5987 | . . . . . . . 8 |
48 | 45, 46, 26, 47 | syl3anc 1233 | . . . . . . 7 |
49 | 48, 26 | eqeltrd 2247 | . . . . . 6 |
50 | 0xr 7966 | . . . . . . 7 | |
51 | 50 | a1i 9 | . . . . . 6 |
52 | xrletri3 9761 | . . . . . 6 | |
53 | 49, 51, 52 | syl2anc 409 | . . . . 5 |
54 | xmetge0 13159 | . . . . . . . . 9 | |
55 | 11, 13, 15, 54 | syl3anc 1233 | . . . . . . . 8 |
56 | xrmax1sup 11216 | . . . . . . . . 9 | |
57 | 17, 24, 56 | syl2anc 409 | . . . . . . . 8 |
58 | 51, 17, 26, 55, 57 | xrletrd 9769 | . . . . . . 7 |
59 | 58, 48 | breqtrrd 4017 | . . . . . 6 |
60 | 59 | biantrud 302 | . . . . 5 |
61 | 53, 60 | bitr4d 190 | . . . 4 |
62 | 48 | breq1d 3999 | . . . 4 |
63 | xrmaxlesup 11222 | . . . . 5 | |
64 | 17, 24, 51, 63 | syl3anc 1233 | . . . 4 |
65 | 61, 62, 64 | 3bitrd 213 | . . 3 |
66 | 55 | biantrud 302 | . . . . 5 |
67 | xrletri3 9761 | . . . . . 6 | |
68 | 17, 51, 67 | syl2anc 409 | . . . . 5 |
69 | 66, 68 | bitr4d 190 | . . . 4 |
70 | xmetge0 13159 | . . . . . . 7 | |
71 | 18, 20, 22, 70 | syl3anc 1233 | . . . . . 6 |
72 | 71 | biantrud 302 | . . . . 5 |
73 | xrletri3 9761 | . . . . . 6 | |
74 | 24, 51, 73 | syl2anc 409 | . . . . 5 |
75 | 72, 74 | bitr4d 190 | . . . 4 |
76 | 69, 75 | anbi12d 470 | . . 3 |
77 | xmeteq0 13153 | . . . . . 6 | |
78 | 11, 13, 15, 77 | syl3anc 1233 | . . . . 5 |
79 | xmeteq0 13153 | . . . . . 6 | |
80 | 18, 20, 22, 79 | syl3anc 1233 | . . . . 5 |
81 | 78, 80 | anbi12d 470 | . . . 4 |
82 | xpopth 6155 | . . . . 5 | |
83 | 82 | adantl 275 | . . . 4 |
84 | 81, 83 | bitrd 187 | . . 3 |
85 | 65, 76, 84 | 3bitrd 213 | . 2 |
86 | 48 | 3adantr3 1153 | . . 3 |
87 | 17 | 3adantr3 1153 | . . . . 5 |
88 | 1 | adantr 274 | . . . . . . 7 |
89 | simpr3 1000 | . . . . . . . 8 | |
90 | xp1st 6144 | . . . . . . . 8 | |
91 | 89, 90 | syl 14 | . . . . . . 7 |
92 | simpr1 998 | . . . . . . . 8 | |
93 | 92, 12 | syl 14 | . . . . . . 7 |
94 | xmetcl 13146 | . . . . . . 7 | |
95 | 88, 91, 93, 94 | syl3anc 1233 | . . . . . 6 |
96 | 15 | 3adantr3 1153 | . . . . . . 7 |
97 | xmetcl 13146 | . . . . . . 7 | |
98 | 88, 91, 96, 97 | syl3anc 1233 | . . . . . 6 |
99 | 95, 98 | xaddcld 9841 | . . . . 5 |
100 | 5 | adantr 274 | . . . . . . . . . 10 |
101 | xp2nd 6145 | . . . . . . . . . . 11 | |
102 | 89, 101 | syl 14 | . . . . . . . . . 10 |
103 | 92, 19 | syl 14 | . . . . . . . . . 10 |
104 | xmetcl 13146 | . . . . . . . . . 10 | |
105 | 100, 102, 103, 104 | syl3anc 1233 | . . . . . . . . 9 |
106 | xrmaxcl 11215 | . . . . . . . . 9 | |
107 | 95, 105, 106 | syl2anc 409 | . . . . . . . 8 |
108 | fveq2 5496 | . . . . . . . . . . . 12 | |
109 | fveq2 5496 | . . . . . . . . . . . 12 | |
110 | 108, 109 | oveqan12d 5872 | . . . . . . . . . . 11 |
111 | fveq2 5496 | . . . . . . . . . . . 12 | |
112 | fveq2 5496 | . . . . . . . . . . . 12 | |
113 | 111, 112 | oveqan12d 5872 | . . . . . . . . . . 11 |
114 | 110, 113 | preq12d 3668 | . . . . . . . . . 10 |
115 | 114 | supeq1d 6964 | . . . . . . . . 9 |
116 | 115, 28 | ovmpoga 5982 | . . . . . . . 8 |
117 | 89, 92, 107, 116 | syl3anc 1233 | . . . . . . 7 |
118 | 117, 107 | eqeltrd 2247 | . . . . . 6 |
119 | simpr2 999 | . . . . . . . 8 | |
120 | 22 | 3adantr3 1153 | . . . . . . . . . 10 |
121 | xmetcl 13146 | . . . . . . . . . 10 | |
122 | 100, 102, 120, 121 | syl3anc 1233 | . . . . . . . . 9 |
123 | xrmaxcl 11215 | . . . . . . . . 9 | |
124 | 98, 122, 123 | syl2anc 409 | . . . . . . . 8 |
125 | 108, 35 | oveqan12d 5872 | . . . . . . . . . . 11 |
126 | 111, 37 | oveqan12d 5872 | . . . . . . . . . . 11 |
127 | 125, 126 | preq12d 3668 | . . . . . . . . . 10 |
128 | 127 | supeq1d 6964 | . . . . . . . . 9 |
129 | 128, 28 | ovmpoga 5982 | . . . . . . . 8 |
130 | 89, 119, 124, 129 | syl3anc 1233 | . . . . . . 7 |
131 | 130, 124 | eqeltrd 2247 | . . . . . 6 |
132 | 118, 131 | xaddcld 9841 | . . . . 5 |
133 | xmettri2 13155 | . . . . . 6 | |
134 | 88, 91, 93, 96, 133 | syl13anc 1235 | . . . . 5 |
135 | xrmax1sup 11216 | . . . . . . . 8 | |
136 | 95, 105, 135 | syl2anc 409 | . . . . . . 7 |
137 | 136, 117 | breqtrrd 4017 | . . . . . 6 |
138 | xrmax1sup 11216 | . . . . . . . 8 | |
139 | 98, 122, 138 | syl2anc 409 | . . . . . . 7 |
140 | 139, 130 | breqtrrd 4017 | . . . . . 6 |
141 | xle2add 9836 | . . . . . . 7 | |
142 | 95, 98, 118, 131, 141 | syl22anc 1234 | . . . . . 6 |
143 | 137, 140, 142 | mp2and 431 | . . . . 5 |
144 | 87, 99, 132, 134, 143 | xrletrd 9769 | . . . 4 |
145 | 24 | 3adantr3 1153 | . . . . 5 |
146 | 105, 122 | xaddcld 9841 | . . . . 5 |
147 | xmettri2 13155 | . . . . . 6 | |
148 | 100, 102, 103, 120, 147 | syl13anc 1235 | . . . . 5 |
149 | xrmax2sup 11217 | . . . . . . . 8 | |
150 | 95, 105, 149 | syl2anc 409 | . . . . . . 7 |
151 | 150, 117 | breqtrrd 4017 | . . . . . 6 |
152 | xrmax2sup 11217 | . . . . . . . 8 | |
153 | 98, 122, 152 | syl2anc 409 | . . . . . . 7 |
154 | 153, 130 | breqtrrd 4017 | . . . . . 6 |
155 | xle2add 9836 | . . . . . . 7 | |
156 | 105, 122, 118, 131, 155 | syl22anc 1234 | . . . . . 6 |
157 | 151, 154, 156 | mp2and 431 | . . . . 5 |
158 | 145, 146, 132, 148, 157 | xrletrd 9769 | . . . 4 |
159 | xrmaxlesup 11222 | . . . . 5 | |
160 | 87, 145, 132, 159 | syl3anc 1233 | . . . 4 |
161 | 144, 158, 160 | mpbir2and 939 | . . 3 |
162 | 86, 161 | eqbrtrd 4011 | . 2 |
163 | 10, 44, 85, 162 | isxmetd 13141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 cvv 2730 cpr 3584 class class class wbr 3989 cxp 4609 wf 5194 cfv 5198 (class class class)co 5853 cmpo 5855 c1st 6117 c2nd 6118 csup 6959 cc0 7774 cxr 7953 clt 7954 cle 7955 cxad 9727 cxmet 12774 cmopn 12779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-map 6628 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-xneg 9729 df-xadd 9730 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-topgen 12600 df-psmet 12781 df-xmet 12782 df-bl 12784 df-mopn 12785 df-top 12790 df-topon 12803 df-bases 12835 |
This theorem is referenced by: xmetxpbl 13302 xmettxlem 13303 xmettx 13304 txmetcnp 13312 |
Copyright terms: Public domain | W3C validator |