| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmetxp | Unicode version | ||
| Description: The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.) |
| Ref | Expression |
|---|---|
| xmetxp.p |
|
| xmetxp.1 |
|
| xmetxp.2 |
|
| Ref | Expression |
|---|---|
| xmetxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetxp.1 |
. . . 4
| |
| 2 | eqid 2207 |
. . . . 5
| |
| 3 | 2 | mopnm 15035 |
. . . 4
|
| 4 | 1, 3 | syl 14 |
. . 3
|
| 5 | xmetxp.2 |
. . . 4
| |
| 6 | eqid 2207 |
. . . . 5
| |
| 7 | 6 | mopnm 15035 |
. . . 4
|
| 8 | 5, 7 | syl 14 |
. . 3
|
| 9 | xpexg 4807 |
. . 3
| |
| 10 | 4, 8, 9 | syl2anc 411 |
. 2
|
| 11 | 1 | adantr 276 |
. . . . . 6
|
| 12 | xp1st 6274 |
. . . . . . 7
| |
| 13 | 12 | ad2antrl 490 |
. . . . . 6
|
| 14 | xp1st 6274 |
. . . . . . 7
| |
| 15 | 14 | ad2antll 491 |
. . . . . 6
|
| 16 | xmetcl 14939 |
. . . . . 6
| |
| 17 | 11, 13, 15, 16 | syl3anc 1250 |
. . . . 5
|
| 18 | 5 | adantr 276 |
. . . . . 6
|
| 19 | xp2nd 6275 |
. . . . . . 7
| |
| 20 | 19 | ad2antrl 490 |
. . . . . 6
|
| 21 | xp2nd 6275 |
. . . . . . 7
| |
| 22 | 21 | ad2antll 491 |
. . . . . 6
|
| 23 | xmetcl 14939 |
. . . . . 6
| |
| 24 | 18, 20, 22, 23 | syl3anc 1250 |
. . . . 5
|
| 25 | xrmaxcl 11678 |
. . . . 5
| |
| 26 | 17, 24, 25 | syl2anc 411 |
. . . 4
|
| 27 | 26 | ralrimivva 2590 |
. . 3
|
| 28 | xmetxp.p |
. . . . 5
| |
| 29 | fveq2 5599 |
. . . . . . . . 9
| |
| 30 | 29 | oveq1d 5982 |
. . . . . . . 8
|
| 31 | fveq2 5599 |
. . . . . . . . 9
| |
| 32 | 31 | oveq1d 5982 |
. . . . . . . 8
|
| 33 | 30, 32 | preq12d 3728 |
. . . . . . 7
|
| 34 | 33 | supeq1d 7115 |
. . . . . 6
|
| 35 | fveq2 5599 |
. . . . . . . . 9
| |
| 36 | 35 | oveq2d 5983 |
. . . . . . . 8
|
| 37 | fveq2 5599 |
. . . . . . . . 9
| |
| 38 | 37 | oveq2d 5983 |
. . . . . . . 8
|
| 39 | 36, 38 | preq12d 3728 |
. . . . . . 7
|
| 40 | 39 | supeq1d 7115 |
. . . . . 6
|
| 41 | 34, 40 | cbvmpov 6048 |
. . . . 5
|
| 42 | 28, 41 | eqtri 2228 |
. . . 4
|
| 43 | 42 | fmpo 6310 |
. . 3
|
| 44 | 27, 43 | sylib 122 |
. 2
|
| 45 | simprl 529 |
. . . . . . . 8
| |
| 46 | simprr 531 |
. . . . . . . 8
| |
| 47 | 34, 40, 28 | ovmpog 6103 |
. . . . . . . 8
|
| 48 | 45, 46, 26, 47 | syl3anc 1250 |
. . . . . . 7
|
| 49 | 48, 26 | eqeltrd 2284 |
. . . . . 6
|
| 50 | 0xr 8154 |
. . . . . . 7
| |
| 51 | 50 | a1i 9 |
. . . . . 6
|
| 52 | xrletri3 9961 |
. . . . . 6
| |
| 53 | 49, 51, 52 | syl2anc 411 |
. . . . 5
|
| 54 | xmetge0 14952 |
. . . . . . . . 9
| |
| 55 | 11, 13, 15, 54 | syl3anc 1250 |
. . . . . . . 8
|
| 56 | xrmax1sup 11679 |
. . . . . . . . 9
| |
| 57 | 17, 24, 56 | syl2anc 411 |
. . . . . . . 8
|
| 58 | 51, 17, 26, 55, 57 | xrletrd 9969 |
. . . . . . 7
|
| 59 | 58, 48 | breqtrrd 4087 |
. . . . . 6
|
| 60 | 59 | biantrud 304 |
. . . . 5
|
| 61 | 53, 60 | bitr4d 191 |
. . . 4
|
| 62 | 48 | breq1d 4069 |
. . . 4
|
| 63 | xrmaxlesup 11685 |
. . . . 5
| |
| 64 | 17, 24, 51, 63 | syl3anc 1250 |
. . . 4
|
| 65 | 61, 62, 64 | 3bitrd 214 |
. . 3
|
| 66 | 55 | biantrud 304 |
. . . . 5
|
| 67 | xrletri3 9961 |
. . . . . 6
| |
| 68 | 17, 51, 67 | syl2anc 411 |
. . . . 5
|
| 69 | 66, 68 | bitr4d 191 |
. . . 4
|
| 70 | xmetge0 14952 |
. . . . . . 7
| |
| 71 | 18, 20, 22, 70 | syl3anc 1250 |
. . . . . 6
|
| 72 | 71 | biantrud 304 |
. . . . 5
|
| 73 | xrletri3 9961 |
. . . . . 6
| |
| 74 | 24, 51, 73 | syl2anc 411 |
. . . . 5
|
| 75 | 72, 74 | bitr4d 191 |
. . . 4
|
| 76 | 69, 75 | anbi12d 473 |
. . 3
|
| 77 | xmeteq0 14946 |
. . . . . 6
| |
| 78 | 11, 13, 15, 77 | syl3anc 1250 |
. . . . 5
|
| 79 | xmeteq0 14946 |
. . . . . 6
| |
| 80 | 18, 20, 22, 79 | syl3anc 1250 |
. . . . 5
|
| 81 | 78, 80 | anbi12d 473 |
. . . 4
|
| 82 | xpopth 6285 |
. . . . 5
| |
| 83 | 82 | adantl 277 |
. . . 4
|
| 84 | 81, 83 | bitrd 188 |
. . 3
|
| 85 | 65, 76, 84 | 3bitrd 214 |
. 2
|
| 86 | 48 | 3adantr3 1161 |
. . 3
|
| 87 | 17 | 3adantr3 1161 |
. . . . 5
|
| 88 | 1 | adantr 276 |
. . . . . . 7
|
| 89 | simpr3 1008 |
. . . . . . . 8
| |
| 90 | xp1st 6274 |
. . . . . . . 8
| |
| 91 | 89, 90 | syl 14 |
. . . . . . 7
|
| 92 | simpr1 1006 |
. . . . . . . 8
| |
| 93 | 92, 12 | syl 14 |
. . . . . . 7
|
| 94 | xmetcl 14939 |
. . . . . . 7
| |
| 95 | 88, 91, 93, 94 | syl3anc 1250 |
. . . . . 6
|
| 96 | 15 | 3adantr3 1161 |
. . . . . . 7
|
| 97 | xmetcl 14939 |
. . . . . . 7
| |
| 98 | 88, 91, 96, 97 | syl3anc 1250 |
. . . . . 6
|
| 99 | 95, 98 | xaddcld 10041 |
. . . . 5
|
| 100 | 5 | adantr 276 |
. . . . . . . . . 10
|
| 101 | xp2nd 6275 |
. . . . . . . . . . 11
| |
| 102 | 89, 101 | syl 14 |
. . . . . . . . . 10
|
| 103 | 92, 19 | syl 14 |
. . . . . . . . . 10
|
| 104 | xmetcl 14939 |
. . . . . . . . . 10
| |
| 105 | 100, 102, 103, 104 | syl3anc 1250 |
. . . . . . . . 9
|
| 106 | xrmaxcl 11678 |
. . . . . . . . 9
| |
| 107 | 95, 105, 106 | syl2anc 411 |
. . . . . . . 8
|
| 108 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 109 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 110 | 108, 109 | oveqan12d 5986 |
. . . . . . . . . . 11
|
| 111 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 112 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 113 | 111, 112 | oveqan12d 5986 |
. . . . . . . . . . 11
|
| 114 | 110, 113 | preq12d 3728 |
. . . . . . . . . 10
|
| 115 | 114 | supeq1d 7115 |
. . . . . . . . 9
|
| 116 | 115, 28 | ovmpoga 6098 |
. . . . . . . 8
|
| 117 | 89, 92, 107, 116 | syl3anc 1250 |
. . . . . . 7
|
| 118 | 117, 107 | eqeltrd 2284 |
. . . . . 6
|
| 119 | simpr2 1007 |
. . . . . . . 8
| |
| 120 | 22 | 3adantr3 1161 |
. . . . . . . . . 10
|
| 121 | xmetcl 14939 |
. . . . . . . . . 10
| |
| 122 | 100, 102, 120, 121 | syl3anc 1250 |
. . . . . . . . 9
|
| 123 | xrmaxcl 11678 |
. . . . . . . . 9
| |
| 124 | 98, 122, 123 | syl2anc 411 |
. . . . . . . 8
|
| 125 | 108, 35 | oveqan12d 5986 |
. . . . . . . . . . 11
|
| 126 | 111, 37 | oveqan12d 5986 |
. . . . . . . . . . 11
|
| 127 | 125, 126 | preq12d 3728 |
. . . . . . . . . 10
|
| 128 | 127 | supeq1d 7115 |
. . . . . . . . 9
|
| 129 | 128, 28 | ovmpoga 6098 |
. . . . . . . 8
|
| 130 | 89, 119, 124, 129 | syl3anc 1250 |
. . . . . . 7
|
| 131 | 130, 124 | eqeltrd 2284 |
. . . . . 6
|
| 132 | 118, 131 | xaddcld 10041 |
. . . . 5
|
| 133 | xmettri2 14948 |
. . . . . 6
| |
| 134 | 88, 91, 93, 96, 133 | syl13anc 1252 |
. . . . 5
|
| 135 | xrmax1sup 11679 |
. . . . . . . 8
| |
| 136 | 95, 105, 135 | syl2anc 411 |
. . . . . . 7
|
| 137 | 136, 117 | breqtrrd 4087 |
. . . . . 6
|
| 138 | xrmax1sup 11679 |
. . . . . . . 8
| |
| 139 | 98, 122, 138 | syl2anc 411 |
. . . . . . 7
|
| 140 | 139, 130 | breqtrrd 4087 |
. . . . . 6
|
| 141 | xle2add 10036 |
. . . . . . 7
| |
| 142 | 95, 98, 118, 131, 141 | syl22anc 1251 |
. . . . . 6
|
| 143 | 137, 140, 142 | mp2and 433 |
. . . . 5
|
| 144 | 87, 99, 132, 134, 143 | xrletrd 9969 |
. . . 4
|
| 145 | 24 | 3adantr3 1161 |
. . . . 5
|
| 146 | 105, 122 | xaddcld 10041 |
. . . . 5
|
| 147 | xmettri2 14948 |
. . . . . 6
| |
| 148 | 100, 102, 103, 120, 147 | syl13anc 1252 |
. . . . 5
|
| 149 | xrmax2sup 11680 |
. . . . . . . 8
| |
| 150 | 95, 105, 149 | syl2anc 411 |
. . . . . . 7
|
| 151 | 150, 117 | breqtrrd 4087 |
. . . . . 6
|
| 152 | xrmax2sup 11680 |
. . . . . . . 8
| |
| 153 | 98, 122, 152 | syl2anc 411 |
. . . . . . 7
|
| 154 | 153, 130 | breqtrrd 4087 |
. . . . . 6
|
| 155 | xle2add 10036 |
. . . . . . 7
| |
| 156 | 105, 122, 118, 131, 155 | syl22anc 1251 |
. . . . . 6
|
| 157 | 151, 154, 156 | mp2and 433 |
. . . . 5
|
| 158 | 145, 146, 132, 148, 157 | xrletrd 9969 |
. . . 4
|
| 159 | xrmaxlesup 11685 |
. . . . 5
| |
| 160 | 87, 145, 132, 159 | syl3anc 1250 |
. . . 4
|
| 161 | 144, 158, 160 | mpbir2and 947 |
. . 3
|
| 162 | 86, 161 | eqbrtrd 4081 |
. 2
|
| 163 | 10, 44, 85, 162 | isxmetd 14934 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-map 6760 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 |
| This theorem is referenced by: xmetxpbl 15095 xmettxlem 15096 xmettx 15097 txmetcnp 15105 |
| Copyright terms: Public domain | W3C validator |