ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetres2 Unicode version

Theorem xmetres2 12920
Description: Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetres2  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( *Met `  R
) )

Proof of Theorem xmetres2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetrel 12884 . . . . 5  |-  Rel  *Met
2 relelfvdm 5512 . . . . 5  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
31, 2mpan 421 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
43adantr 274 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  X  e.  dom  *Met )
5 simpr 109 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  R  C_  X
)
64, 5ssexd 4116 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  R  e.  _V )
7 xmetf 12891 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
87adantr 274 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  D :
( X  X.  X
) --> RR* )
9 xpss12 4705 . . . 4  |-  ( ( R  C_  X  /\  R  C_  X )  -> 
( R  X.  R
)  C_  ( X  X.  X ) )
105, 9sylancom 417 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  ( R  X.  R )  C_  ( X  X.  X ) )
118, 10fssresd 5358 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  ( D  |`  ( R  X.  R
) ) : ( R  X.  R ) -->
RR* )
12 ovres 5972 . . . . 5  |-  ( ( x  e.  R  /\  y  e.  R )  ->  ( x ( D  |`  ( R  X.  R
) ) y )  =  ( x D y ) )
1312adantl 275 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( x ( D  |`  ( R  X.  R
) ) y )  =  ( x D y ) )
1413eqeq1d 2173 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( ( x ( D  |`  ( R  X.  R ) ) y )  =  0  <->  (
x D y )  =  0 ) )
15 simpll 519 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  ->  D  e.  ( *Met `  X ) )
16 simplr 520 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  ->  R  C_  X )
17 simprl 521 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  ->  x  e.  R )
1816, 17sseldd 3138 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  ->  x  e.  X )
19 simprr 522 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
y  e.  R )
2016, 19sseldd 3138 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
y  e.  X )
21 xmeteq0 12900 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( (
x D y )  =  0  <->  x  =  y ) )
2215, 18, 20, 21syl3anc 1227 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( ( x D y )  =  0  <-> 
x  =  y ) )
2314, 22bitrd 187 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( ( x ( D  |`  ( R  X.  R ) ) y )  =  0  <->  x  =  y ) )
24 simpll 519 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  ->  D  e.  ( *Met `  X ) )
25 simplr 520 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  ->  R  C_  X )
26 simpr3 994 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
z  e.  R )
2725, 26sseldd 3138 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
z  e.  X )
28183adantr3 1147 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  ->  x  e.  X )
29203adantr3 1147 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
y  e.  X )
30 xmettri2 12902 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( z  e.  X  /\  x  e.  X  /\  y  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
3124, 27, 28, 29, 30syl13anc 1229 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
32133adantr3 1147 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
( x ( D  |`  ( R  X.  R
) ) y )  =  ( x D y ) )
33 simpr1 992 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  ->  x  e.  R )
3426, 33ovresd 5973 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
( z ( D  |`  ( R  X.  R
) ) x )  =  ( z D x ) )
35 simpr2 993 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
y  e.  R )
3626, 35ovresd 5973 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
( z ( D  |`  ( R  X.  R
) ) y )  =  ( z D y ) )
3734, 36oveq12d 5854 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
( ( z ( D  |`  ( R  X.  R ) ) x ) +e ( z ( D  |`  ( R  X.  R
) ) y ) )  =  ( ( z D x ) +e ( z D y ) ) )
3831, 32, 373brtr4d 4008 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
( x ( D  |`  ( R  X.  R
) ) y )  <_  ( ( z ( D  |`  ( R  X.  R ) ) x ) +e
( z ( D  |`  ( R  X.  R
) ) y ) ) )
396, 11, 23, 38isxmetd 12888 1  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( *Met `  R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 967    = wceq 1342    e. wcel 2135    C_ wss 3111   class class class wbr 3976    X. cxp 4596   dom cdm 4598    |` cres 4600   Rel wrel 4603   -->wf 5178   ` cfv 5182  (class class class)co 5836   0cc0 7744   RR*cxr 7923    <_ cle 7925   +ecxad 9697   *Metcxmet 12521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-map 6607  df-pnf 7926  df-mnf 7927  df-xr 7928  df-xmet 12529
This theorem is referenced by:  metres2  12922  xmetres  12923  xmetresbl  12981  metrest  13047  divcnap  13096  cncfmet  13120  limcimolemlt  13174  cnplimcim  13177  cnplimclemr  13179  limccnpcntop  13185  limccnp2cntop  13187
  Copyright terms: Public domain W3C validator