ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetres2 Unicode version

Theorem xmetres2 12537
Description: Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetres2  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( *Met `  R
) )

Proof of Theorem xmetres2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetrel 12501 . . . . 5  |-  Rel  *Met
2 relelfvdm 5446 . . . . 5  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
31, 2mpan 420 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
43adantr 274 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  X  e.  dom  *Met )
5 simpr 109 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  R  C_  X
)
64, 5ssexd 4063 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  R  e.  _V )
7 xmetf 12508 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
87adantr 274 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  D :
( X  X.  X
) --> RR* )
9 xpss12 4641 . . . 4  |-  ( ( R  C_  X  /\  R  C_  X )  -> 
( R  X.  R
)  C_  ( X  X.  X ) )
105, 9sylancom 416 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  ( R  X.  R )  C_  ( X  X.  X ) )
118, 10fssresd 5294 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  ( D  |`  ( R  X.  R
) ) : ( R  X.  R ) -->
RR* )
12 ovres 5903 . . . . 5  |-  ( ( x  e.  R  /\  y  e.  R )  ->  ( x ( D  |`  ( R  X.  R
) ) y )  =  ( x D y ) )
1312adantl 275 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( x ( D  |`  ( R  X.  R
) ) y )  =  ( x D y ) )
1413eqeq1d 2146 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( ( x ( D  |`  ( R  X.  R ) ) y )  =  0  <->  (
x D y )  =  0 ) )
15 simpll 518 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  ->  D  e.  ( *Met `  X ) )
16 simplr 519 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  ->  R  C_  X )
17 simprl 520 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  ->  x  e.  R )
1816, 17sseldd 3093 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  ->  x  e.  X )
19 simprr 521 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
y  e.  R )
2016, 19sseldd 3093 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
y  e.  X )
21 xmeteq0 12517 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( (
x D y )  =  0  <->  x  =  y ) )
2215, 18, 20, 21syl3anc 1216 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( ( x D y )  =  0  <-> 
x  =  y ) )
2314, 22bitrd 187 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R ) )  -> 
( ( x ( D  |`  ( R  X.  R ) ) y )  =  0  <->  x  =  y ) )
24 simpll 518 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  ->  D  e.  ( *Met `  X ) )
25 simplr 519 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  ->  R  C_  X )
26 simpr3 989 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
z  e.  R )
2725, 26sseldd 3093 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
z  e.  X )
28183adantr3 1142 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  ->  x  e.  X )
29203adantr3 1142 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
y  e.  X )
30 xmettri2 12519 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( z  e.  X  /\  x  e.  X  /\  y  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
3124, 27, 28, 29, 30syl13anc 1218 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
32133adantr3 1142 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
( x ( D  |`  ( R  X.  R
) ) y )  =  ( x D y ) )
33 simpr1 987 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  ->  x  e.  R )
3426, 33ovresd 5904 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
( z ( D  |`  ( R  X.  R
) ) x )  =  ( z D x ) )
35 simpr2 988 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
y  e.  R )
3626, 35ovresd 5904 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
( z ( D  |`  ( R  X.  R
) ) y )  =  ( z D y ) )
3734, 36oveq12d 5785 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
( ( z ( D  |`  ( R  X.  R ) ) x ) +e ( z ( D  |`  ( R  X.  R
) ) y ) )  =  ( ( z D x ) +e ( z D y ) ) )
3831, 32, 373brtr4d 3955 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  C_  X
)  /\  ( x  e.  R  /\  y  e.  R  /\  z  e.  R ) )  -> 
( x ( D  |`  ( R  X.  R
) ) y )  <_  ( ( z ( D  |`  ( R  X.  R ) ) x ) +e
( z ( D  |`  ( R  X.  R
) ) y ) ) )
396, 11, 23, 38isxmetd 12505 1  |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( *Met `  R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480    C_ wss 3066   class class class wbr 3924    X. cxp 4532   dom cdm 4534    |` cres 4536   Rel wrel 4539   -->wf 5114   ` cfv 5118  (class class class)co 5767   0cc0 7613   RR*cxr 7792    <_ cle 7794   +ecxad 9550   *Metcxmet 12138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-pnf 7795  df-mnf 7796  df-xr 7797  df-xmet 12146
This theorem is referenced by:  metres2  12539  xmetres  12540  xmetresbl  12598  metrest  12664  divcnap  12713  cncfmet  12737  limcimolemlt  12791  cnplimcim  12794  cnplimclemr  12796  limccnpcntop  12802  limccnp2cntop  12804
  Copyright terms: Public domain W3C validator