ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanaddap Unicode version

Theorem tanaddap 12250
Description: Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanaddap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  ( A  +  B ) )  =  ( ( ( tan `  A )  +  ( tan `  B ) )  /  ( 1  -  ( ( tan `  A )  x.  ( tan `  B ) ) ) ) )

Proof of Theorem tanaddap
StepHypRef Expression
1 addcl 8124 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
21adantr 276 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( A  +  B )  e.  CC )
3 simpr3 1029 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( cos `  ( A  +  B ) ) #  0 )
4 tanvalap 12219 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  ( cos `  ( A  +  B ) ) #  0 )  ->  ( tan `  ( A  +  B ) )  =  ( ( sin `  ( A  +  B )
)  /  ( cos `  ( A  +  B
) ) ) )
52, 3, 4syl2anc 411 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  ( A  +  B ) )  =  ( ( sin `  ( A  +  B )
)  /  ( cos `  ( A  +  B
) ) ) )
6 sinadd 12247 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
)  =  ( ( ( sin `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )
76adantr 276 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( sin `  ( A  +  B ) )  =  ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) ) )
8 cosadd 12248 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
98adantr 276 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( cos `  ( A  +  B ) )  =  ( ( ( cos `  A )  x.  ( cos `  B ) )  -  ( ( sin `  A )  x.  ( sin `  B ) ) ) )
107, 9oveq12d 6019 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( sin `  ( A  +  B )
)  /  ( cos `  ( A  +  B
) ) )  =  ( ( ( ( sin `  A )  x.  ( cos `  B
) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) )  /  ( ( ( cos `  A )  x.  ( cos `  B
) )  -  (
( sin `  A
)  x.  ( sin `  B ) ) ) ) )
11 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  A  e.  CC )
1211coscld 12222 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( cos `  A )  e.  CC )
13 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  B  e.  CC )
1413coscld 12222 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( cos `  B )  e.  CC )
1512, 14mulcld 8167 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  A
)  x.  ( cos `  B ) )  e.  CC )
16 simpr1 1027 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( cos `  A ) #  0 )
1711, 16tanclapd 12223 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  A )  e.  CC )
18 simpr2 1028 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( cos `  B ) #  0 )
1913, 18tanclapd 12223 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  B )  e.  CC )
2015, 17, 19adddid 8171 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  +  ( tan `  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  A
) )  +  ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  B
) ) ) )
2112, 14, 17mul32d 8299 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  A
) )  =  ( ( ( cos `  A
)  x.  ( tan `  A ) )  x.  ( cos `  B
) ) )
22 tanvalap 12219 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
2311, 16, 22syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
2423oveq2d 6017 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  A
)  x.  ( tan `  A ) )  =  ( ( cos `  A
)  x.  ( ( sin `  A )  /  ( cos `  A
) ) ) )
2511sincld 12221 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( sin `  A )  e.  CC )
2625, 12, 16divcanap2d 8939 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  A
)  x.  ( ( sin `  A )  /  ( cos `  A
) ) )  =  ( sin `  A
) )
2724, 26eqtrd 2262 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  A
)  x.  ( tan `  A ) )  =  ( sin `  A
) )
2827oveq1d 6016 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( tan `  A ) )  x.  ( cos `  B
) )  =  ( ( sin `  A
)  x.  ( cos `  B ) ) )
2921, 28eqtrd 2262 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  A
) )  =  ( ( sin `  A
)  x.  ( cos `  B ) ) )
3012, 14, 19mulassd 8170 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  B
) )  =  ( ( cos `  A
)  x.  ( ( cos `  B )  x.  ( tan `  B
) ) ) )
31 tanvalap 12219 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  ( cos `  B ) #  0 )  ->  ( tan `  B )  =  ( ( sin `  B
)  /  ( cos `  B ) ) )
3213, 18, 31syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  B )  =  ( ( sin `  B
)  /  ( cos `  B ) ) )
3332oveq2d 6017 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  B
)  x.  ( tan `  B ) )  =  ( ( cos `  B
)  x.  ( ( sin `  B )  /  ( cos `  B
) ) ) )
3413sincld 12221 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( sin `  B )  e.  CC )
3534, 14, 18divcanap2d 8939 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  B
)  x.  ( ( sin `  B )  /  ( cos `  B
) ) )  =  ( sin `  B
) )
3633, 35eqtrd 2262 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  B
)  x.  ( tan `  B ) )  =  ( sin `  B
) )
3736oveq2d 6017 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  A
)  x.  ( ( cos `  B )  x.  ( tan `  B
) ) )  =  ( ( cos `  A
)  x.  ( sin `  B ) ) )
3830, 37eqtrd 2262 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  B
) )  =  ( ( cos `  A
)  x.  ( sin `  B ) ) )
3929, 38oveq12d 6019 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( ( cos `  A )  x.  ( cos `  B ) )  x.  ( tan `  A
) )  +  ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  B
) ) )  =  ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) ) )
4020, 39eqtrd 2262 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  +  ( tan `  B ) ) )  =  ( ( ( sin `  A )  x.  ( cos `  B
) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )
41 1cnd 8162 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  1  e.  CC )
4217, 19mulcld 8167 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( tan `  A
)  x.  ( tan `  B ) )  e.  CC )
4315, 41, 42subdid 8560 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  1 )  -  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  x.  ( tan `  B ) ) ) ) )
4415mulridd 8163 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  1 )  =  ( ( cos `  A
)  x.  ( cos `  B ) ) )
4512, 14, 17, 19mul4d 8301 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  x.  ( tan `  B ) ) )  =  ( ( ( cos `  A )  x.  ( tan `  A
) )  x.  (
( cos `  B
)  x.  ( tan `  B ) ) ) )
4627, 36oveq12d 6019 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( tan `  A ) )  x.  ( ( cos `  B
)  x.  ( tan `  B ) ) )  =  ( ( sin `  A )  x.  ( sin `  B ) ) )
4745, 46eqtrd 2262 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  x.  ( tan `  B ) ) )  =  ( ( sin `  A )  x.  ( sin `  B ) ) )
4844, 47oveq12d 6019 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( ( cos `  A )  x.  ( cos `  B ) )  x.  1 )  -  ( ( ( cos `  A )  x.  ( cos `  B ) )  x.  ( ( tan `  A )  x.  ( tan `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
4943, 48eqtrd 2262 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
5040, 49oveq12d 6019 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( ( cos `  A )  x.  ( cos `  B ) )  x.  ( ( tan `  A )  +  ( tan `  B ) ) )  /  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) ) )  =  ( ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) )  /  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) ) )
5117, 19addcld 8166 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( tan `  A
)  +  ( tan `  B ) )  e.  CC )
52 ax-1cn 8092 . . . . 5  |-  1  e.  CC
53 subcl 8345 . . . . 5  |-  ( ( 1  e.  CC  /\  ( ( tan `  A
)  x.  ( tan `  B ) )  e.  CC )  ->  (
1  -  ( ( tan `  A )  x.  ( tan `  B
) ) )  e.  CC )
5452, 42, 53sylancr 414 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
1  -  ( ( tan `  A )  x.  ( tan `  B
) ) )  e.  CC )
55 tanaddaplem 12249 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( cos `  ( A  +  B
) ) #  0  <->  (
( tan `  A
)  x.  ( tan `  B ) ) #  1 ) )
56553adantr3 1182 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  ( A  +  B )
) #  0  <->  ( ( tan `  A )  x.  ( tan `  B
) ) #  1 ) )
573, 56mpbid 147 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( tan `  A
)  x.  ( tan `  B ) ) #  1 )
58 apsym 8753 . . . . . . 7  |-  ( ( ( ( tan `  A
)  x.  ( tan `  B ) )  e.  CC  /\  1  e.  CC )  ->  (
( ( tan `  A
)  x.  ( tan `  B ) ) #  1  <->  1 #  ( ( tan `  A )  x.  ( tan `  B ) ) ) )
5942, 41, 58syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( tan `  A
)  x.  ( tan `  B ) ) #  1  <->  1 #  ( ( tan `  A )  x.  ( tan `  B ) ) ) )
6057, 59mpbid 147 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  1 #  ( ( tan `  A
)  x.  ( tan `  B ) ) )
6141, 42, 60subap0d 8791 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
1  -  ( ( tan `  A )  x.  ( tan `  B
) ) ) #  0 )
6212, 14, 16, 18mulap0d 8805 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  A
)  x.  ( cos `  B ) ) #  0 )
6351, 54, 15, 61, 62divcanap5d 8964 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( ( cos `  A )  x.  ( cos `  B ) )  x.  ( ( tan `  A )  +  ( tan `  B ) ) )  /  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) ) )  =  ( ( ( tan `  A
)  +  ( tan `  B ) )  / 
( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) ) )
6410, 50, 633eqtr2d 2268 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( sin `  ( A  +  B )
)  /  ( cos `  ( A  +  B
) ) )  =  ( ( ( tan `  A )  +  ( tan `  B ) )  /  ( 1  -  ( ( tan `  A )  x.  ( tan `  B ) ) ) ) )
655, 64eqtrd 2262 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  ( A  +  B ) )  =  ( ( ( tan `  A )  +  ( tan `  B ) )  /  ( 1  -  ( ( tan `  A )  x.  ( tan `  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    - cmin 8317   # cap 8728    / cdiv 8819   sincsin 12155   cosccos 12156   tanctan 12157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-ico 10090  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-sin 12161  df-cos 12162  df-tan 12163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator