ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanaddap Unicode version

Theorem tanaddap 11923
Description: Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanaddap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  ( A  +  B ) )  =  ( ( ( tan `  A )  +  ( tan `  B ) )  /  ( 1  -  ( ( tan `  A )  x.  ( tan `  B ) ) ) ) )

Proof of Theorem tanaddap
StepHypRef Expression
1 addcl 8023 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
21adantr 276 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( A  +  B )  e.  CC )
3 simpr3 1007 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( cos `  ( A  +  B ) ) #  0 )
4 tanvalap 11892 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  ( cos `  ( A  +  B ) ) #  0 )  ->  ( tan `  ( A  +  B ) )  =  ( ( sin `  ( A  +  B )
)  /  ( cos `  ( A  +  B
) ) ) )
52, 3, 4syl2anc 411 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  ( A  +  B ) )  =  ( ( sin `  ( A  +  B )
)  /  ( cos `  ( A  +  B
) ) ) )
6 sinadd 11920 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
)  =  ( ( ( sin `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )
76adantr 276 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( sin `  ( A  +  B ) )  =  ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) ) )
8 cosadd 11921 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
98adantr 276 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( cos `  ( A  +  B ) )  =  ( ( ( cos `  A )  x.  ( cos `  B ) )  -  ( ( sin `  A )  x.  ( sin `  B ) ) ) )
107, 9oveq12d 5943 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( sin `  ( A  +  B )
)  /  ( cos `  ( A  +  B
) ) )  =  ( ( ( ( sin `  A )  x.  ( cos `  B
) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) )  /  ( ( ( cos `  A )  x.  ( cos `  B
) )  -  (
( sin `  A
)  x.  ( sin `  B ) ) ) ) )
11 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  A  e.  CC )
1211coscld 11895 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( cos `  A )  e.  CC )
13 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  B  e.  CC )
1413coscld 11895 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( cos `  B )  e.  CC )
1512, 14mulcld 8066 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  A
)  x.  ( cos `  B ) )  e.  CC )
16 simpr1 1005 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( cos `  A ) #  0 )
1711, 16tanclapd 11896 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  A )  e.  CC )
18 simpr2 1006 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( cos `  B ) #  0 )
1913, 18tanclapd 11896 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  B )  e.  CC )
2015, 17, 19adddid 8070 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  +  ( tan `  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  A
) )  +  ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  B
) ) ) )
2112, 14, 17mul32d 8198 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  A
) )  =  ( ( ( cos `  A
)  x.  ( tan `  A ) )  x.  ( cos `  B
) ) )
22 tanvalap 11892 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
2311, 16, 22syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
2423oveq2d 5941 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  A
)  x.  ( tan `  A ) )  =  ( ( cos `  A
)  x.  ( ( sin `  A )  /  ( cos `  A
) ) ) )
2511sincld 11894 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( sin `  A )  e.  CC )
2625, 12, 16divcanap2d 8838 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  A
)  x.  ( ( sin `  A )  /  ( cos `  A
) ) )  =  ( sin `  A
) )
2724, 26eqtrd 2229 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  A
)  x.  ( tan `  A ) )  =  ( sin `  A
) )
2827oveq1d 5940 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( tan `  A ) )  x.  ( cos `  B
) )  =  ( ( sin `  A
)  x.  ( cos `  B ) ) )
2921, 28eqtrd 2229 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  A
) )  =  ( ( sin `  A
)  x.  ( cos `  B ) ) )
3012, 14, 19mulassd 8069 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  B
) )  =  ( ( cos `  A
)  x.  ( ( cos `  B )  x.  ( tan `  B
) ) ) )
31 tanvalap 11892 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  ( cos `  B ) #  0 )  ->  ( tan `  B )  =  ( ( sin `  B
)  /  ( cos `  B ) ) )
3213, 18, 31syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  B )  =  ( ( sin `  B
)  /  ( cos `  B ) ) )
3332oveq2d 5941 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  B
)  x.  ( tan `  B ) )  =  ( ( cos `  B
)  x.  ( ( sin `  B )  /  ( cos `  B
) ) ) )
3413sincld 11894 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( sin `  B )  e.  CC )
3534, 14, 18divcanap2d 8838 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  B
)  x.  ( ( sin `  B )  /  ( cos `  B
) ) )  =  ( sin `  B
) )
3633, 35eqtrd 2229 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  B
)  x.  ( tan `  B ) )  =  ( sin `  B
) )
3736oveq2d 5941 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  A
)  x.  ( ( cos `  B )  x.  ( tan `  B
) ) )  =  ( ( cos `  A
)  x.  ( sin `  B ) ) )
3830, 37eqtrd 2229 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  B
) )  =  ( ( cos `  A
)  x.  ( sin `  B ) ) )
3929, 38oveq12d 5943 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( ( cos `  A )  x.  ( cos `  B ) )  x.  ( tan `  A
) )  +  ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( tan `  B
) ) )  =  ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) ) )
4020, 39eqtrd 2229 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  +  ( tan `  B ) ) )  =  ( ( ( sin `  A )  x.  ( cos `  B
) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )
41 1cnd 8061 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  1  e.  CC )
4217, 19mulcld 8066 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( tan `  A
)  x.  ( tan `  B ) )  e.  CC )
4315, 41, 42subdid 8459 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  1 )  -  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  x.  ( tan `  B ) ) ) ) )
4415mulridd 8062 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  1 )  =  ( ( cos `  A
)  x.  ( cos `  B ) ) )
4512, 14, 17, 19mul4d 8200 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  x.  ( tan `  B ) ) )  =  ( ( ( cos `  A )  x.  ( tan `  A
) )  x.  (
( cos `  B
)  x.  ( tan `  B ) ) ) )
4627, 36oveq12d 5943 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( tan `  A ) )  x.  ( ( cos `  B
)  x.  ( tan `  B ) ) )  =  ( ( sin `  A )  x.  ( sin `  B ) ) )
4745, 46eqtrd 2229 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( ( tan `  A
)  x.  ( tan `  B ) ) )  =  ( ( sin `  A )  x.  ( sin `  B ) ) )
4844, 47oveq12d 5943 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( ( cos `  A )  x.  ( cos `  B ) )  x.  1 )  -  ( ( ( cos `  A )  x.  ( cos `  B ) )  x.  ( ( tan `  A )  x.  ( tan `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
4943, 48eqtrd 2229 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
5040, 49oveq12d 5943 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( ( cos `  A )  x.  ( cos `  B ) )  x.  ( ( tan `  A )  +  ( tan `  B ) ) )  /  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) ) )  =  ( ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) )  /  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) ) )
5117, 19addcld 8065 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( tan `  A
)  +  ( tan `  B ) )  e.  CC )
52 ax-1cn 7991 . . . . 5  |-  1  e.  CC
53 subcl 8244 . . . . 5  |-  ( ( 1  e.  CC  /\  ( ( tan `  A
)  x.  ( tan `  B ) )  e.  CC )  ->  (
1  -  ( ( tan `  A )  x.  ( tan `  B
) ) )  e.  CC )
5452, 42, 53sylancr 414 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
1  -  ( ( tan `  A )  x.  ( tan `  B
) ) )  e.  CC )
55 tanaddaplem 11922 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( cos `  ( A  +  B
) ) #  0  <->  (
( tan `  A
)  x.  ( tan `  B ) ) #  1 ) )
56553adantr3 1160 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  ( A  +  B )
) #  0  <->  ( ( tan `  A )  x.  ( tan `  B
) ) #  1 ) )
573, 56mpbid 147 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( tan `  A
)  x.  ( tan `  B ) ) #  1 )
58 apsym 8652 . . . . . . 7  |-  ( ( ( ( tan `  A
)  x.  ( tan `  B ) )  e.  CC  /\  1  e.  CC )  ->  (
( ( tan `  A
)  x.  ( tan `  B ) ) #  1  <->  1 #  ( ( tan `  A )  x.  ( tan `  B ) ) ) )
5942, 41, 58syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( tan `  A
)  x.  ( tan `  B ) ) #  1  <->  1 #  ( ( tan `  A )  x.  ( tan `  B ) ) ) )
6057, 59mpbid 147 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  1 #  ( ( tan `  A
)  x.  ( tan `  B ) ) )
6141, 42, 60subap0d 8690 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
1  -  ( ( tan `  A )  x.  ( tan `  B
) ) ) #  0 )
6212, 14, 16, 18mulap0d 8704 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( cos `  A
)  x.  ( cos `  B ) ) #  0 )
6351, 54, 15, 61, 62divcanap5d 8863 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( ( ( cos `  A )  x.  ( cos `  B ) )  x.  ( ( tan `  A )  +  ( tan `  B ) ) )  /  (
( ( cos `  A
)  x.  ( cos `  B ) )  x.  ( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) ) )  =  ( ( ( tan `  A
)  +  ( tan `  B ) )  / 
( 1  -  (
( tan `  A
)  x.  ( tan `  B ) ) ) ) )
6410, 50, 633eqtr2d 2235 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  (
( sin `  ( A  +  B )
)  /  ( cos `  ( A  +  B
) ) )  =  ( ( ( tan `  A )  +  ( tan `  B ) )  /  ( 1  -  ( ( tan `  A )  x.  ( tan `  B ) ) ) ) )
655, 64eqtrd 2229 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0  /\  ( cos `  ( A  +  B ) ) #  0 ) )  ->  ( tan `  ( A  +  B ) )  =  ( ( ( tan `  A )  +  ( tan `  B ) )  /  ( 1  -  ( ( tan `  A )  x.  ( tan `  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903    - cmin 8216   # cap 8627    / cdiv 8718   sincsin 11828   cosccos 11829   tanctan 11830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-ico 9988  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-bc 10859  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-ef 11832  df-sin 11834  df-cos 11835  df-tan 11836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator