| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isxmet2d | Unicode version | ||
| Description: It is safe to only
require the triangle inequality when the values are
         real (so that we can use the standard addition over the reals), but in
         this case the nonnegativity constraint cannot be deduced and must be
         provided separately.  (Counterexample:
          | 
| Ref | Expression | 
|---|---|
| isxmetd.0 | 
 | 
| isxmetd.1 | 
 | 
| isxmet2d.2 | 
 | 
| isxmet2d.3 | 
 | 
| isxmet2d.4 | 
 | 
| Ref | Expression | 
|---|---|
| isxmet2d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isxmetd.0 | 
. 2
 | |
| 2 | isxmetd.1 | 
. 2
 | |
| 3 | 2 | fovcdmda 6067 | 
. . . 4
 | 
| 4 | 0xr 8073 | 
. . . 4
 | |
| 5 | xrletri3 9879 | 
. . . 4
 | |
| 6 | 3, 4, 5 | sylancl 413 | 
. . 3
 | 
| 7 | isxmet2d.2 | 
. . . 4
 | |
| 8 | 7 | biantrud 304 | 
. . 3
 | 
| 9 | isxmet2d.3 | 
. . 3
 | |
| 10 | 6, 8, 9 | 3bitr2d 216 | 
. 2
 | 
| 11 | isxmet2d.4 | 
. . . . . . 7
 | |
| 12 | 11 | 3expa 1205 | 
. . . . . 6
 | 
| 13 | rexadd 9927 | 
. . . . . . 7
 | |
| 14 | 13 | adantl 277 | 
. . . . . 6
 | 
| 15 | 12, 14 | breqtrrd 4061 | 
. . . . 5
 | 
| 16 | 15 | anassrs 400 | 
. . . 4
 | 
| 17 | 3 | 3adantr3 1160 | 
. . . . . . 7
 | 
| 18 | pnfge 9864 | 
. . . . . . 7
 | |
| 19 | 17, 18 | syl 14 | 
. . . . . 6
 | 
| 20 | 19 | ad2antrr 488 | 
. . . . 5
 | 
| 21 | oveq2 5930 | 
. . . . . 6
 | |
| 22 | 2 | ffnd 5408 | 
. . . . . . . . . . 11
 | 
| 23 | elxrge0 10053 | 
. . . . . . . . . . . . 13
 | |
| 24 | 3, 7, 23 | sylanbrc 417 | 
. . . . . . . . . . . 12
 | 
| 25 | 24 | ralrimivva 2579 | 
. . . . . . . . . . 11
 | 
| 26 | ffnov 6026 | 
. . . . . . . . . . 11
 | |
| 27 | 22, 25, 26 | sylanbrc 417 | 
. . . . . . . . . 10
 | 
| 28 | 27 | adantr 276 | 
. . . . . . . . 9
 | 
| 29 | simpr3 1007 | 
. . . . . . . . 9
 | |
| 30 | simpr1 1005 | 
. . . . . . . . 9
 | |
| 31 | 28, 29, 30 | fovcdmd 6068 | 
. . . . . . . 8
 | 
| 32 | elxrge0 10053 | 
. . . . . . . . 9
 | |
| 33 | 32 | simplbi 274 | 
. . . . . . . 8
 | 
| 34 | 31, 33 | syl 14 | 
. . . . . . 7
 | 
| 35 | renemnf 8075 | 
. . . . . . 7
 | |
| 36 | xaddpnf1 9921 | 
. . . . . . 7
 | |
| 37 | 34, 35, 36 | syl2an 289 | 
. . . . . 6
 | 
| 38 | 21, 37 | sylan9eqr 2251 | 
. . . . 5
 | 
| 39 | 20, 38 | breqtrrd 4061 | 
. . . 4
 | 
| 40 | simpr2 1006 | 
. . . . . . . . . . 11
 | |
| 41 | 28, 29, 40 | fovcdmd 6068 | 
. . . . . . . . . 10
 | 
| 42 | elxrge0 10053 | 
. . . . . . . . . . 11
 | |
| 43 | 42 | simplbi 274 | 
. . . . . . . . . 10
 | 
| 44 | 41, 43 | syl 14 | 
. . . . . . . . 9
 | 
| 45 | 42 | simprbi 275 | 
. . . . . . . . . 10
 | 
| 46 | 41, 45 | syl 14 | 
. . . . . . . . 9
 | 
| 47 | ge0nemnf 9899 | 
. . . . . . . . 9
 | |
| 48 | 44, 46, 47 | syl2anc 411 | 
. . . . . . . 8
 | 
| 49 | 48 | neneqd 2388 | 
. . . . . . 7
 | 
| 50 | 49 | pm2.21d 620 | 
. . . . . 6
 | 
| 51 | 50 | adantr 276 | 
. . . . 5
 | 
| 52 | 51 | imp 124 | 
. . . 4
 | 
| 53 | 44 | adantr 276 | 
. . . . 5
 | 
| 54 | elxr 9851 | 
. . . . 5
 | |
| 55 | 53, 54 | sylib 122 | 
. . . 4
 | 
| 56 | 16, 39, 52, 55 | mpjao3dan 1318 | 
. . 3
 | 
| 57 | 19 | adantr 276 | 
. . . 4
 | 
| 58 | oveq1 5929 | 
. . . . 5
 | |
| 59 | xaddpnf2 9922 | 
. . . . . 6
 | |
| 60 | 44, 48, 59 | syl2anc 411 | 
. . . . 5
 | 
| 61 | 58, 60 | sylan9eqr 2251 | 
. . . 4
 | 
| 62 | 57, 61 | breqtrrd 4061 | 
. . 3
 | 
| 63 | 32 | simprbi 275 | 
. . . . . . . 8
 | 
| 64 | 31, 63 | syl 14 | 
. . . . . . 7
 | 
| 65 | ge0nemnf 9899 | 
. . . . . . 7
 | |
| 66 | 34, 64, 65 | syl2anc 411 | 
. . . . . 6
 | 
| 67 | 66 | neneqd 2388 | 
. . . . 5
 | 
| 68 | 67 | pm2.21d 620 | 
. . . 4
 | 
| 69 | 68 | imp 124 | 
. . 3
 | 
| 70 | elxr 9851 | 
. . . 4
 | |
| 71 | 34, 70 | sylib 122 | 
. . 3
 | 
| 72 | 56, 62, 69, 71 | mpjao3dan 1318 | 
. 2
 | 
| 73 | 1, 2, 10, 72 | isxmetd 14583 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-xadd 9848 df-icc 9970 df-xmet 14100 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |