| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isxmet2d | Unicode version | ||
| Description: It is safe to only
require the triangle inequality when the values are
real (so that we can use the standard addition over the reals), but in
this case the nonnegativity constraint cannot be deduced and must be
provided separately. (Counterexample:
|
| Ref | Expression |
|---|---|
| isxmetd.0 |
|
| isxmetd.1 |
|
| isxmet2d.2 |
|
| isxmet2d.3 |
|
| isxmet2d.4 |
|
| Ref | Expression |
|---|---|
| isxmet2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isxmetd.0 |
. 2
| |
| 2 | isxmetd.1 |
. 2
| |
| 3 | 2 | fovcdmda 6113 |
. . . 4
|
| 4 | 0xr 8154 |
. . . 4
| |
| 5 | xrletri3 9961 |
. . . 4
| |
| 6 | 3, 4, 5 | sylancl 413 |
. . 3
|
| 7 | isxmet2d.2 |
. . . 4
| |
| 8 | 7 | biantrud 304 |
. . 3
|
| 9 | isxmet2d.3 |
. . 3
| |
| 10 | 6, 8, 9 | 3bitr2d 216 |
. 2
|
| 11 | isxmet2d.4 |
. . . . . . 7
| |
| 12 | 11 | 3expa 1206 |
. . . . . 6
|
| 13 | rexadd 10009 |
. . . . . . 7
| |
| 14 | 13 | adantl 277 |
. . . . . 6
|
| 15 | 12, 14 | breqtrrd 4087 |
. . . . 5
|
| 16 | 15 | anassrs 400 |
. . . 4
|
| 17 | 3 | 3adantr3 1161 |
. . . . . . 7
|
| 18 | pnfge 9946 |
. . . . . . 7
| |
| 19 | 17, 18 | syl 14 |
. . . . . 6
|
| 20 | 19 | ad2antrr 488 |
. . . . 5
|
| 21 | oveq2 5975 |
. . . . . 6
| |
| 22 | 2 | ffnd 5446 |
. . . . . . . . . . 11
|
| 23 | elxrge0 10135 |
. . . . . . . . . . . . 13
| |
| 24 | 3, 7, 23 | sylanbrc 417 |
. . . . . . . . . . . 12
|
| 25 | 24 | ralrimivva 2590 |
. . . . . . . . . . 11
|
| 26 | ffnov 6072 |
. . . . . . . . . . 11
| |
| 27 | 22, 25, 26 | sylanbrc 417 |
. . . . . . . . . 10
|
| 28 | 27 | adantr 276 |
. . . . . . . . 9
|
| 29 | simpr3 1008 |
. . . . . . . . 9
| |
| 30 | simpr1 1006 |
. . . . . . . . 9
| |
| 31 | 28, 29, 30 | fovcdmd 6114 |
. . . . . . . 8
|
| 32 | elxrge0 10135 |
. . . . . . . . 9
| |
| 33 | 32 | simplbi 274 |
. . . . . . . 8
|
| 34 | 31, 33 | syl 14 |
. . . . . . 7
|
| 35 | renemnf 8156 |
. . . . . . 7
| |
| 36 | xaddpnf1 10003 |
. . . . . . 7
| |
| 37 | 34, 35, 36 | syl2an 289 |
. . . . . 6
|
| 38 | 21, 37 | sylan9eqr 2262 |
. . . . 5
|
| 39 | 20, 38 | breqtrrd 4087 |
. . . 4
|
| 40 | simpr2 1007 |
. . . . . . . . . . 11
| |
| 41 | 28, 29, 40 | fovcdmd 6114 |
. . . . . . . . . 10
|
| 42 | elxrge0 10135 |
. . . . . . . . . . 11
| |
| 43 | 42 | simplbi 274 |
. . . . . . . . . 10
|
| 44 | 41, 43 | syl 14 |
. . . . . . . . 9
|
| 45 | 42 | simprbi 275 |
. . . . . . . . . 10
|
| 46 | 41, 45 | syl 14 |
. . . . . . . . 9
|
| 47 | ge0nemnf 9981 |
. . . . . . . . 9
| |
| 48 | 44, 46, 47 | syl2anc 411 |
. . . . . . . 8
|
| 49 | 48 | neneqd 2399 |
. . . . . . 7
|
| 50 | 49 | pm2.21d 620 |
. . . . . 6
|
| 51 | 50 | adantr 276 |
. . . . 5
|
| 52 | 51 | imp 124 |
. . . 4
|
| 53 | 44 | adantr 276 |
. . . . 5
|
| 54 | elxr 9933 |
. . . . 5
| |
| 55 | 53, 54 | sylib 122 |
. . . 4
|
| 56 | 16, 39, 52, 55 | mpjao3dan 1320 |
. . 3
|
| 57 | 19 | adantr 276 |
. . . 4
|
| 58 | oveq1 5974 |
. . . . 5
| |
| 59 | xaddpnf2 10004 |
. . . . . 6
| |
| 60 | 44, 48, 59 | syl2anc 411 |
. . . . 5
|
| 61 | 58, 60 | sylan9eqr 2262 |
. . . 4
|
| 62 | 57, 61 | breqtrrd 4087 |
. . 3
|
| 63 | 32 | simprbi 275 |
. . . . . . . 8
|
| 64 | 31, 63 | syl 14 |
. . . . . . 7
|
| 65 | ge0nemnf 9981 |
. . . . . . 7
| |
| 66 | 34, 64, 65 | syl2anc 411 |
. . . . . 6
|
| 67 | 66 | neneqd 2399 |
. . . . 5
|
| 68 | 67 | pm2.21d 620 |
. . . 4
|
| 69 | 68 | imp 124 |
. . 3
|
| 70 | elxr 9933 |
. . . 4
| |
| 71 | 34, 70 | sylib 122 |
. . 3
|
| 72 | 56, 62, 69, 71 | mpjao3dan 1320 |
. 2
|
| 73 | 1, 2, 10, 72 | isxmetd 14934 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-xadd 9930 df-icc 10052 df-xmet 14421 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |