Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isxmet2d | Unicode version |
Description: It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
isxmetd.0 | |
isxmetd.1 | |
isxmet2d.2 | |
isxmet2d.3 | |
isxmet2d.4 |
Ref | Expression |
---|---|
isxmet2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isxmetd.0 | . 2 | |
2 | isxmetd.1 | . 2 | |
3 | 2 | fovrnda 5985 | . . . 4 |
4 | 0xr 7945 | . . . 4 | |
5 | xrletri3 9740 | . . . 4 | |
6 | 3, 4, 5 | sylancl 410 | . . 3 |
7 | isxmet2d.2 | . . . 4 | |
8 | 7 | biantrud 302 | . . 3 |
9 | isxmet2d.3 | . . 3 | |
10 | 6, 8, 9 | 3bitr2d 215 | . 2 |
11 | isxmet2d.4 | . . . . . . 7 | |
12 | 11 | 3expa 1193 | . . . . . 6 |
13 | rexadd 9788 | . . . . . . 7 | |
14 | 13 | adantl 275 | . . . . . 6 |
15 | 12, 14 | breqtrrd 4010 | . . . . 5 |
16 | 15 | anassrs 398 | . . . 4 |
17 | 3 | 3adantr3 1148 | . . . . . . 7 |
18 | pnfge 9725 | . . . . . . 7 | |
19 | 17, 18 | syl 14 | . . . . . 6 |
20 | 19 | ad2antrr 480 | . . . . 5 |
21 | oveq2 5850 | . . . . . 6 | |
22 | 2 | ffnd 5338 | . . . . . . . . . . 11 |
23 | elxrge0 9914 | . . . . . . . . . . . . 13 | |
24 | 3, 7, 23 | sylanbrc 414 | . . . . . . . . . . . 12 |
25 | 24 | ralrimivva 2548 | . . . . . . . . . . 11 |
26 | ffnov 5946 | . . . . . . . . . . 11 | |
27 | 22, 25, 26 | sylanbrc 414 | . . . . . . . . . 10 |
28 | 27 | adantr 274 | . . . . . . . . 9 |
29 | simpr3 995 | . . . . . . . . 9 | |
30 | simpr1 993 | . . . . . . . . 9 | |
31 | 28, 29, 30 | fovrnd 5986 | . . . . . . . 8 |
32 | elxrge0 9914 | . . . . . . . . 9 | |
33 | 32 | simplbi 272 | . . . . . . . 8 |
34 | 31, 33 | syl 14 | . . . . . . 7 |
35 | renemnf 7947 | . . . . . . 7 | |
36 | xaddpnf1 9782 | . . . . . . 7 | |
37 | 34, 35, 36 | syl2an 287 | . . . . . 6 |
38 | 21, 37 | sylan9eqr 2221 | . . . . 5 |
39 | 20, 38 | breqtrrd 4010 | . . . 4 |
40 | simpr2 994 | . . . . . . . . . . 11 | |
41 | 28, 29, 40 | fovrnd 5986 | . . . . . . . . . 10 |
42 | elxrge0 9914 | . . . . . . . . . . 11 | |
43 | 42 | simplbi 272 | . . . . . . . . . 10 |
44 | 41, 43 | syl 14 | . . . . . . . . 9 |
45 | 42 | simprbi 273 | . . . . . . . . . 10 |
46 | 41, 45 | syl 14 | . . . . . . . . 9 |
47 | ge0nemnf 9760 | . . . . . . . . 9 | |
48 | 44, 46, 47 | syl2anc 409 | . . . . . . . 8 |
49 | 48 | neneqd 2357 | . . . . . . 7 |
50 | 49 | pm2.21d 609 | . . . . . 6 |
51 | 50 | adantr 274 | . . . . 5 |
52 | 51 | imp 123 | . . . 4 |
53 | 44 | adantr 274 | . . . . 5 |
54 | elxr 9712 | . . . . 5 | |
55 | 53, 54 | sylib 121 | . . . 4 |
56 | 16, 39, 52, 55 | mpjao3dan 1297 | . . 3 |
57 | 19 | adantr 274 | . . . 4 |
58 | oveq1 5849 | . . . . 5 | |
59 | xaddpnf2 9783 | . . . . . 6 | |
60 | 44, 48, 59 | syl2anc 409 | . . . . 5 |
61 | 58, 60 | sylan9eqr 2221 | . . . 4 |
62 | 57, 61 | breqtrrd 4010 | . . 3 |
63 | 32 | simprbi 273 | . . . . . . . 8 |
64 | 31, 63 | syl 14 | . . . . . . 7 |
65 | ge0nemnf 9760 | . . . . . . 7 | |
66 | 34, 64, 65 | syl2anc 409 | . . . . . 6 |
67 | 66 | neneqd 2357 | . . . . 5 |
68 | 67 | pm2.21d 609 | . . . 4 |
69 | 68 | imp 123 | . . 3 |
70 | elxr 9712 | . . . 4 | |
71 | 34, 70 | sylib 121 | . . 3 |
72 | 56, 62, 69, 71 | mpjao3dan 1297 | . 2 |
73 | 1, 2, 10, 72 | isxmetd 12987 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3o 967 w3a 968 wceq 1343 wcel 2136 wne 2336 wral 2444 cvv 2726 class class class wbr 3982 cxp 4602 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 cr 7752 cc0 7753 caddc 7756 cpnf 7930 cmnf 7931 cxr 7932 cle 7934 cxad 9706 cicc 9827 cxmet 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-xadd 9709 df-icc 9831 df-xmet 12628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |