| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isxmet2d | Unicode version | ||
| Description: It is safe to only
require the triangle inequality when the values are
real (so that we can use the standard addition over the reals), but in
this case the nonnegativity constraint cannot be deduced and must be
provided separately. (Counterexample:
|
| Ref | Expression |
|---|---|
| isxmetd.0 |
|
| isxmetd.1 |
|
| isxmet2d.2 |
|
| isxmet2d.3 |
|
| isxmet2d.4 |
|
| Ref | Expression |
|---|---|
| isxmet2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isxmetd.0 |
. 2
| |
| 2 | isxmetd.1 |
. 2
| |
| 3 | 2 | fovcdmda 6149 |
. . . 4
|
| 4 | 0xr 8193 |
. . . 4
| |
| 5 | xrletri3 10000 |
. . . 4
| |
| 6 | 3, 4, 5 | sylancl 413 |
. . 3
|
| 7 | isxmet2d.2 |
. . . 4
| |
| 8 | 7 | biantrud 304 |
. . 3
|
| 9 | isxmet2d.3 |
. . 3
| |
| 10 | 6, 8, 9 | 3bitr2d 216 |
. 2
|
| 11 | isxmet2d.4 |
. . . . . . 7
| |
| 12 | 11 | 3expa 1227 |
. . . . . 6
|
| 13 | rexadd 10048 |
. . . . . . 7
| |
| 14 | 13 | adantl 277 |
. . . . . 6
|
| 15 | 12, 14 | breqtrrd 4111 |
. . . . 5
|
| 16 | 15 | anassrs 400 |
. . . 4
|
| 17 | 3 | 3adantr3 1182 |
. . . . . . 7
|
| 18 | pnfge 9985 |
. . . . . . 7
| |
| 19 | 17, 18 | syl 14 |
. . . . . 6
|
| 20 | 19 | ad2antrr 488 |
. . . . 5
|
| 21 | oveq2 6009 |
. . . . . 6
| |
| 22 | 2 | ffnd 5474 |
. . . . . . . . . . 11
|
| 23 | elxrge0 10174 |
. . . . . . . . . . . . 13
| |
| 24 | 3, 7, 23 | sylanbrc 417 |
. . . . . . . . . . . 12
|
| 25 | 24 | ralrimivva 2612 |
. . . . . . . . . . 11
|
| 26 | ffnov 6108 |
. . . . . . . . . . 11
| |
| 27 | 22, 25, 26 | sylanbrc 417 |
. . . . . . . . . 10
|
| 28 | 27 | adantr 276 |
. . . . . . . . 9
|
| 29 | simpr3 1029 |
. . . . . . . . 9
| |
| 30 | simpr1 1027 |
. . . . . . . . 9
| |
| 31 | 28, 29, 30 | fovcdmd 6150 |
. . . . . . . 8
|
| 32 | elxrge0 10174 |
. . . . . . . . 9
| |
| 33 | 32 | simplbi 274 |
. . . . . . . 8
|
| 34 | 31, 33 | syl 14 |
. . . . . . 7
|
| 35 | renemnf 8195 |
. . . . . . 7
| |
| 36 | xaddpnf1 10042 |
. . . . . . 7
| |
| 37 | 34, 35, 36 | syl2an 289 |
. . . . . 6
|
| 38 | 21, 37 | sylan9eqr 2284 |
. . . . 5
|
| 39 | 20, 38 | breqtrrd 4111 |
. . . 4
|
| 40 | simpr2 1028 |
. . . . . . . . . . 11
| |
| 41 | 28, 29, 40 | fovcdmd 6150 |
. . . . . . . . . 10
|
| 42 | elxrge0 10174 |
. . . . . . . . . . 11
| |
| 43 | 42 | simplbi 274 |
. . . . . . . . . 10
|
| 44 | 41, 43 | syl 14 |
. . . . . . . . 9
|
| 45 | 42 | simprbi 275 |
. . . . . . . . . 10
|
| 46 | 41, 45 | syl 14 |
. . . . . . . . 9
|
| 47 | ge0nemnf 10020 |
. . . . . . . . 9
| |
| 48 | 44, 46, 47 | syl2anc 411 |
. . . . . . . 8
|
| 49 | 48 | neneqd 2421 |
. . . . . . 7
|
| 50 | 49 | pm2.21d 622 |
. . . . . 6
|
| 51 | 50 | adantr 276 |
. . . . 5
|
| 52 | 51 | imp 124 |
. . . 4
|
| 53 | 44 | adantr 276 |
. . . . 5
|
| 54 | elxr 9972 |
. . . . 5
| |
| 55 | 53, 54 | sylib 122 |
. . . 4
|
| 56 | 16, 39, 52, 55 | mpjao3dan 1341 |
. . 3
|
| 57 | 19 | adantr 276 |
. . . 4
|
| 58 | oveq1 6008 |
. . . . 5
| |
| 59 | xaddpnf2 10043 |
. . . . . 6
| |
| 60 | 44, 48, 59 | syl2anc 411 |
. . . . 5
|
| 61 | 58, 60 | sylan9eqr 2284 |
. . . 4
|
| 62 | 57, 61 | breqtrrd 4111 |
. . 3
|
| 63 | 32 | simprbi 275 |
. . . . . . . 8
|
| 64 | 31, 63 | syl 14 |
. . . . . . 7
|
| 65 | ge0nemnf 10020 |
. . . . . . 7
| |
| 66 | 34, 64, 65 | syl2anc 411 |
. . . . . 6
|
| 67 | 66 | neneqd 2421 |
. . . . 5
|
| 68 | 67 | pm2.21d 622 |
. . . 4
|
| 69 | 68 | imp 124 |
. . 3
|
| 70 | elxr 9972 |
. . . 4
| |
| 71 | 34, 70 | sylib 122 |
. . 3
|
| 72 | 56, 62, 69, 71 | mpjao3dan 1341 |
. 2
|
| 73 | 1, 2, 10, 72 | isxmetd 15021 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-xadd 9969 df-icc 10091 df-xmet 14508 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |