| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isxmet2d | Unicode version | ||
| Description: It is safe to only
require the triangle inequality when the values are
real (so that we can use the standard addition over the reals), but in
this case the nonnegativity constraint cannot be deduced and must be
provided separately. (Counterexample:
|
| Ref | Expression |
|---|---|
| isxmetd.0 |
|
| isxmetd.1 |
|
| isxmet2d.2 |
|
| isxmet2d.3 |
|
| isxmet2d.4 |
|
| Ref | Expression |
|---|---|
| isxmet2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isxmetd.0 |
. 2
| |
| 2 | isxmetd.1 |
. 2
| |
| 3 | 2 | fovcdmda 6071 |
. . . 4
|
| 4 | 0xr 8092 |
. . . 4
| |
| 5 | xrletri3 9898 |
. . . 4
| |
| 6 | 3, 4, 5 | sylancl 413 |
. . 3
|
| 7 | isxmet2d.2 |
. . . 4
| |
| 8 | 7 | biantrud 304 |
. . 3
|
| 9 | isxmet2d.3 |
. . 3
| |
| 10 | 6, 8, 9 | 3bitr2d 216 |
. 2
|
| 11 | isxmet2d.4 |
. . . . . . 7
| |
| 12 | 11 | 3expa 1205 |
. . . . . 6
|
| 13 | rexadd 9946 |
. . . . . . 7
| |
| 14 | 13 | adantl 277 |
. . . . . 6
|
| 15 | 12, 14 | breqtrrd 4062 |
. . . . 5
|
| 16 | 15 | anassrs 400 |
. . . 4
|
| 17 | 3 | 3adantr3 1160 |
. . . . . . 7
|
| 18 | pnfge 9883 |
. . . . . . 7
| |
| 19 | 17, 18 | syl 14 |
. . . . . 6
|
| 20 | 19 | ad2antrr 488 |
. . . . 5
|
| 21 | oveq2 5933 |
. . . . . 6
| |
| 22 | 2 | ffnd 5411 |
. . . . . . . . . . 11
|
| 23 | elxrge0 10072 |
. . . . . . . . . . . . 13
| |
| 24 | 3, 7, 23 | sylanbrc 417 |
. . . . . . . . . . . 12
|
| 25 | 24 | ralrimivva 2579 |
. . . . . . . . . . 11
|
| 26 | ffnov 6030 |
. . . . . . . . . . 11
| |
| 27 | 22, 25, 26 | sylanbrc 417 |
. . . . . . . . . 10
|
| 28 | 27 | adantr 276 |
. . . . . . . . 9
|
| 29 | simpr3 1007 |
. . . . . . . . 9
| |
| 30 | simpr1 1005 |
. . . . . . . . 9
| |
| 31 | 28, 29, 30 | fovcdmd 6072 |
. . . . . . . 8
|
| 32 | elxrge0 10072 |
. . . . . . . . 9
| |
| 33 | 32 | simplbi 274 |
. . . . . . . 8
|
| 34 | 31, 33 | syl 14 |
. . . . . . 7
|
| 35 | renemnf 8094 |
. . . . . . 7
| |
| 36 | xaddpnf1 9940 |
. . . . . . 7
| |
| 37 | 34, 35, 36 | syl2an 289 |
. . . . . 6
|
| 38 | 21, 37 | sylan9eqr 2251 |
. . . . 5
|
| 39 | 20, 38 | breqtrrd 4062 |
. . . 4
|
| 40 | simpr2 1006 |
. . . . . . . . . . 11
| |
| 41 | 28, 29, 40 | fovcdmd 6072 |
. . . . . . . . . 10
|
| 42 | elxrge0 10072 |
. . . . . . . . . . 11
| |
| 43 | 42 | simplbi 274 |
. . . . . . . . . 10
|
| 44 | 41, 43 | syl 14 |
. . . . . . . . 9
|
| 45 | 42 | simprbi 275 |
. . . . . . . . . 10
|
| 46 | 41, 45 | syl 14 |
. . . . . . . . 9
|
| 47 | ge0nemnf 9918 |
. . . . . . . . 9
| |
| 48 | 44, 46, 47 | syl2anc 411 |
. . . . . . . 8
|
| 49 | 48 | neneqd 2388 |
. . . . . . 7
|
| 50 | 49 | pm2.21d 620 |
. . . . . 6
|
| 51 | 50 | adantr 276 |
. . . . 5
|
| 52 | 51 | imp 124 |
. . . 4
|
| 53 | 44 | adantr 276 |
. . . . 5
|
| 54 | elxr 9870 |
. . . . 5
| |
| 55 | 53, 54 | sylib 122 |
. . . 4
|
| 56 | 16, 39, 52, 55 | mpjao3dan 1318 |
. . 3
|
| 57 | 19 | adantr 276 |
. . . 4
|
| 58 | oveq1 5932 |
. . . . 5
| |
| 59 | xaddpnf2 9941 |
. . . . . 6
| |
| 60 | 44, 48, 59 | syl2anc 411 |
. . . . 5
|
| 61 | 58, 60 | sylan9eqr 2251 |
. . . 4
|
| 62 | 57, 61 | breqtrrd 4062 |
. . 3
|
| 63 | 32 | simprbi 275 |
. . . . . . . 8
|
| 64 | 31, 63 | syl 14 |
. . . . . . 7
|
| 65 | ge0nemnf 9918 |
. . . . . . 7
| |
| 66 | 34, 64, 65 | syl2anc 411 |
. . . . . 6
|
| 67 | 66 | neneqd 2388 |
. . . . 5
|
| 68 | 67 | pm2.21d 620 |
. . . 4
|
| 69 | 68 | imp 124 |
. . 3
|
| 70 | elxr 9870 |
. . . 4
| |
| 71 | 34, 70 | sylib 122 |
. . 3
|
| 72 | 56, 62, 69, 71 | mpjao3dan 1318 |
. 2
|
| 73 | 1, 2, 10, 72 | isxmetd 14691 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 ax-rnegex 8007 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-xadd 9867 df-icc 9989 df-xmet 14178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |