ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxmet2d Unicode version

Theorem isxmet2d 12276
Description: It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample:  D ( x ,  y )  =  if ( x  =  y ,  0 , -oo ) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
isxmetd.0  |-  ( ph  ->  X  e.  _V )
isxmetd.1  |-  ( ph  ->  D : ( X  X.  X ) --> RR* )
isxmet2d.2  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x D y ) )
isxmet2d.3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x D y )  <_  0  <->  x  =  y ) )
isxmet2d.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  /\  (
( z D x )  e.  RR  /\  ( z D y )  e.  RR ) )  ->  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) )
Assertion
Ref Expression
isxmet2d  |-  ( ph  ->  D  e.  ( *Met `  X ) )
Distinct variable groups:    x, y, z, D    ph, x, y, z   
x, X, y, z

Proof of Theorem isxmet2d
StepHypRef Expression
1 isxmetd.0 . 2  |-  ( ph  ->  X  e.  _V )
2 isxmetd.1 . 2  |-  ( ph  ->  D : ( X  X.  X ) --> RR* )
32fovrnda 5846 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x D y )  e.  RR* )
4 0xr 7684 . . . 4  |-  0  e.  RR*
5 xrletri3 9429 . . . 4  |-  ( ( ( x D y )  e.  RR*  /\  0  e.  RR* )  ->  (
( x D y )  =  0  <->  (
( x D y )  <_  0  /\  0  <_  ( x D y ) ) ) )
63, 4, 5sylancl 407 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x D y )  =  0  <-> 
( ( x D y )  <_  0  /\  0  <_  ( x D y ) ) ) )
7 isxmet2d.2 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x D y ) )
87biantrud 300 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x D y )  <_  0  <->  ( ( x D y )  <_  0  /\  0  <_  ( x D y ) ) ) )
9 isxmet2d.3 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x D y )  <_  0  <->  x  =  y ) )
106, 8, 93bitr2d 215 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x D y )  =  0  <-> 
x  =  y ) )
11 isxmet2d.4 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  /\  (
( z D x )  e.  RR  /\  ( z D y )  e.  RR ) )  ->  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) )
12113expa 1149 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  /\  ( (
z D x )  e.  RR  /\  (
z D y )  e.  RR ) )  ->  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) )
13 rexadd 9476 . . . . . . 7  |-  ( ( ( z D x )  e.  RR  /\  ( z D y )  e.  RR )  ->  ( ( z D x ) +e ( z D y ) )  =  ( ( z D x )  +  ( z D y ) ) )
1413adantl 273 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  /\  ( (
z D x )  e.  RR  /\  (
z D y )  e.  RR ) )  ->  ( ( z D x ) +e ( z D y ) )  =  ( ( z D x )  +  ( z D y ) ) )
1512, 14breqtrrd 3901 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  /\  ( (
z D x )  e.  RR  /\  (
z D y )  e.  RR ) )  ->  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )
1615anassrs 395 . . . 4  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X
) )  /\  (
z D x )  e.  RR )  /\  ( z D y )  e.  RR )  ->  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )
1733adantr3 1110 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x D y )  e.  RR* )
18 pnfge 9416 . . . . . . 7  |-  ( ( x D y )  e.  RR*  ->  ( x D y )  <_ +oo )
1917, 18syl 14 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x D y )  <_ +oo )
2019ad2antrr 475 . . . . 5  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X
) )  /\  (
z D x )  e.  RR )  /\  ( z D y )  = +oo )  ->  ( x D y )  <_ +oo )
21 oveq2 5714 . . . . . 6  |-  ( ( z D y )  = +oo  ->  (
( z D x ) +e ( z D y ) )  =  ( ( z D x ) +e +oo )
)
222ffnd 5209 . . . . . . . . . . 11  |-  ( ph  ->  D  Fn  ( X  X.  X ) )
23 elxrge0 9602 . . . . . . . . . . . . 13  |-  ( ( x D y )  e.  ( 0 [,] +oo )  <->  ( ( x D y )  e. 
RR*  /\  0  <_  ( x D y ) ) )
243, 7, 23sylanbrc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x D y )  e.  ( 0 [,] +oo ) )
2524ralrimivva 2473 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( x D y )  e.  ( 0 [,] +oo ) )
26 ffnov 5807 . . . . . . . . . . 11  |-  ( D : ( X  X.  X ) --> ( 0 [,] +oo )  <->  ( D  Fn  ( X  X.  X
)  /\  A. x  e.  X  A. y  e.  X  ( x D y )  e.  ( 0 [,] +oo ) ) )
2722, 25, 26sylanbrc 411 . . . . . . . . . 10  |-  ( ph  ->  D : ( X  X.  X ) --> ( 0 [,] +oo )
)
2827adantr 272 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  D : ( X  X.  X ) --> ( 0 [,] +oo ) )
29 simpr3 957 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
z  e.  X )
30 simpr1 955 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  x  e.  X )
3128, 29, 30fovrnd 5847 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( z D x )  e.  ( 0 [,] +oo ) )
32 elxrge0 9602 . . . . . . . . 9  |-  ( ( z D x )  e.  ( 0 [,] +oo )  <->  ( ( z D x )  e. 
RR*  /\  0  <_  ( z D x ) ) )
3332simplbi 270 . . . . . . . 8  |-  ( ( z D x )  e.  ( 0 [,] +oo )  ->  ( z D x )  e. 
RR* )
3431, 33syl 14 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( z D x )  e.  RR* )
35 renemnf 7686 . . . . . . 7  |-  ( ( z D x )  e.  RR  ->  (
z D x )  =/= -oo )
36 xaddpnf1 9470 . . . . . . 7  |-  ( ( ( z D x )  e.  RR*  /\  (
z D x )  =/= -oo )  -> 
( ( z D x ) +e +oo )  = +oo )
3734, 35, 36syl2an 285 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  /\  ( z D x )  e.  RR )  ->  (
( z D x ) +e +oo )  = +oo )
3821, 37sylan9eqr 2154 . . . . 5  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X
) )  /\  (
z D x )  e.  RR )  /\  ( z D y )  = +oo )  ->  ( ( z D x ) +e
( z D y ) )  = +oo )
3920, 38breqtrrd 3901 . . . 4  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X
) )  /\  (
z D x )  e.  RR )  /\  ( z D y )  = +oo )  ->  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
40 simpr2 956 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
y  e.  X )
4128, 29, 40fovrnd 5847 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( z D y )  e.  ( 0 [,] +oo ) )
42 elxrge0 9602 . . . . . . . . . . 11  |-  ( ( z D y )  e.  ( 0 [,] +oo )  <->  ( ( z D y )  e. 
RR*  /\  0  <_  ( z D y ) ) )
4342simplbi 270 . . . . . . . . . 10  |-  ( ( z D y )  e.  ( 0 [,] +oo )  ->  ( z D y )  e. 
RR* )
4441, 43syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( z D y )  e.  RR* )
4542simprbi 271 . . . . . . . . . 10  |-  ( ( z D y )  e.  ( 0 [,] +oo )  ->  0  <_ 
( z D y ) )
4641, 45syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
0  <_  ( z D y ) )
47 ge0nemnf 9448 . . . . . . . . 9  |-  ( ( ( z D y )  e.  RR*  /\  0  <_  ( z D y ) )  ->  (
z D y )  =/= -oo )
4844, 46, 47syl2anc 406 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( z D y )  =/= -oo )
4948neneqd 2288 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  -.  ( z D y )  = -oo )
5049pm2.21d 589 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( z D y )  = -oo  ->  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
5150adantr 272 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  /\  ( z D x )  e.  RR )  ->  (
( z D y )  = -oo  ->  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) )
5251imp 123 . . . 4  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X
) )  /\  (
z D x )  e.  RR )  /\  ( z D y )  = -oo )  ->  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
5344adantr 272 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  /\  ( z D x )  e.  RR )  ->  (
z D y )  e.  RR* )
54 elxr 9404 . . . . 5  |-  ( ( z D y )  e.  RR*  <->  ( ( z D y )  e.  RR  \/  ( z D y )  = +oo  \/  ( z D y )  = -oo ) )
5553, 54sylib 121 . . . 4  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  /\  ( z D x )  e.  RR )  ->  (
( z D y )  e.  RR  \/  ( z D y )  = +oo  \/  ( z D y )  = -oo )
)
5616, 39, 52, 55mpjao3dan 1253 . . 3  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  /\  ( z D x )  e.  RR )  ->  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) )
5719adantr 272 . . . 4  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  /\  ( z D x )  = +oo )  ->  (
x D y )  <_ +oo )
58 oveq1 5713 . . . . 5  |-  ( ( z D x )  = +oo  ->  (
( z D x ) +e ( z D y ) )  =  ( +oo +e ( z D y ) ) )
59 xaddpnf2 9471 . . . . . 6  |-  ( ( ( z D y )  e.  RR*  /\  (
z D y )  =/= -oo )  -> 
( +oo +e ( z D y ) )  = +oo )
6044, 48, 59syl2anc 406 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( +oo +e ( z D y ) )  = +oo )
6158, 60sylan9eqr 2154 . . . 4  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  /\  ( z D x )  = +oo )  ->  (
( z D x ) +e ( z D y ) )  = +oo )
6257, 61breqtrrd 3901 . . 3  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  /\  ( z D x )  = +oo )  ->  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) )
6332simprbi 271 . . . . . . . 8  |-  ( ( z D x )  e.  ( 0 [,] +oo )  ->  0  <_ 
( z D x ) )
6431, 63syl 14 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
0  <_  ( z D x ) )
65 ge0nemnf 9448 . . . . . . 7  |-  ( ( ( z D x )  e.  RR*  /\  0  <_  ( z D x ) )  ->  (
z D x )  =/= -oo )
6634, 64, 65syl2anc 406 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( z D x )  =/= -oo )
6766neneqd 2288 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  -.  ( z D x )  = -oo )
6867pm2.21d 589 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( z D x )  = -oo  ->  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
6968imp 123 . . 3  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  /\  ( z D x )  = -oo )  ->  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) )
70 elxr 9404 . . . 4  |-  ( ( z D x )  e.  RR*  <->  ( ( z D x )  e.  RR  \/  ( z D x )  = +oo  \/  ( z D x )  = -oo ) )
7134, 70sylib 121 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( z D x )  e.  RR  \/  ( z D x )  = +oo  \/  ( z D x )  = -oo )
)
7256, 62, 69, 71mpjao3dan 1253 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
731, 2, 10, 72isxmetd 12275 1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 929    /\ w3a 930    = wceq 1299    e. wcel 1448    =/= wne 2267   A.wral 2375   _Vcvv 2641   class class class wbr 3875    X. cxp 4475    Fn wfn 5054   -->wf 5055   ` cfv 5059  (class class class)co 5706   RRcr 7499   0cc0 7500    + caddc 7503   +oocpnf 7669   -oocmnf 7670   RR*cxr 7671    <_ cle 7673   +ecxad 9398   [,]cicc 9515   *Metcxmet 11931
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1re 7589  ax-addrcl 7592  ax-rnegex 7604  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-map 6474  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-xadd 9401  df-icc 9519  df-xmet 11939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator