| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > comet | Unicode version | ||
| Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| comet.1 |
|
| comet.2 |
|
| comet.3 |
|
| comet.4 |
|
| comet.5 |
|
| Ref | Expression |
|---|---|
| comet |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetrel 14890 |
. . . 4
| |
| 2 | comet.1 |
. . . 4
| |
| 3 | relelfvdm 5621 |
. . . 4
| |
| 4 | 1, 2, 3 | sylancr 414 |
. . 3
|
| 5 | 4 | elexd 2787 |
. 2
|
| 6 | comet.2 |
. . 3
| |
| 7 | xmetf 14897 |
. . . . . 6
| |
| 8 | 2, 7 | syl 14 |
. . . . 5
|
| 9 | 8 | ffnd 5436 |
. . . 4
|
| 10 | xmetcl 14899 |
. . . . . . . 8
| |
| 11 | xmetge0 14912 |
. . . . . . . 8
| |
| 12 | elxrge0 10120 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | sylanbrc 417 |
. . . . . . 7
|
| 14 | 13 | 3expb 1207 |
. . . . . 6
|
| 15 | 2, 14 | sylan 283 |
. . . . 5
|
| 16 | 15 | ralrimivva 2589 |
. . . 4
|
| 17 | ffnov 6062 |
. . . 4
| |
| 18 | 9, 16, 17 | sylanbrc 417 |
. . 3
|
| 19 | fco 5451 |
. . 3
| |
| 20 | 6, 18, 19 | syl2anc 411 |
. 2
|
| 21 | opelxpi 4715 |
. . . . . 6
| |
| 22 | fvco3 5663 |
. . . . . 6
| |
| 23 | 8, 21, 22 | syl2an 289 |
. . . . 5
|
| 24 | df-ov 5960 |
. . . . 5
| |
| 25 | df-ov 5960 |
. . . . . 6
| |
| 26 | 25 | fveq2i 5592 |
. . . . 5
|
| 27 | 23, 24, 26 | 3eqtr4g 2264 |
. . . 4
|
| 28 | 27 | eqeq1d 2215 |
. . 3
|
| 29 | fveq2 5589 |
. . . . . 6
| |
| 30 | 29 | eqeq1d 2215 |
. . . . 5
|
| 31 | eqeq1 2213 |
. . . . 5
| |
| 32 | 30, 31 | bibi12d 235 |
. . . 4
|
| 33 | comet.3 |
. . . . . 6
| |
| 34 | 33 | ralrimiva 2580 |
. . . . 5
|
| 35 | 34 | adantr 276 |
. . . 4
|
| 36 | 32, 35, 15 | rspcdva 2886 |
. . 3
|
| 37 | xmeteq0 14906 |
. . . . 5
| |
| 38 | 37 | 3expb 1207 |
. . . 4
|
| 39 | 2, 38 | sylan 283 |
. . 3
|
| 40 | 28, 36, 39 | 3bitrd 214 |
. 2
|
| 41 | 6 | adantr 276 |
. . . . 5
|
| 42 | 15 | 3adantr3 1161 |
. . . . 5
|
| 43 | 41, 42 | ffvelcdmd 5729 |
. . . 4
|
| 44 | 18 | adantr 276 |
. . . . . . 7
|
| 45 | simpr3 1008 |
. . . . . . 7
| |
| 46 | simpr1 1006 |
. . . . . . 7
| |
| 47 | 44, 45, 46 | fovcdmd 6104 |
. . . . . 6
|
| 48 | simpr2 1007 |
. . . . . . 7
| |
| 49 | 44, 45, 48 | fovcdmd 6104 |
. . . . . 6
|
| 50 | ge0xaddcl 10125 |
. . . . . 6
| |
| 51 | 47, 49, 50 | syl2anc 411 |
. . . . 5
|
| 52 | 41, 51 | ffvelcdmd 5729 |
. . . 4
|
| 53 | 41, 47 | ffvelcdmd 5729 |
. . . . 5
|
| 54 | 41, 49 | ffvelcdmd 5729 |
. . . . 5
|
| 55 | 53, 54 | xaddcld 10026 |
. . . 4
|
| 56 | 3anrot 986 |
. . . . . . 7
| |
| 57 | xmettri2 14908 |
. . . . . . 7
| |
| 58 | 56, 57 | sylan2br 288 |
. . . . . 6
|
| 59 | 2, 58 | sylan 283 |
. . . . 5
|
| 60 | comet.4 |
. . . . . . . 8
| |
| 61 | 60 | ralrimivva 2589 |
. . . . . . 7
|
| 62 | 61 | adantr 276 |
. . . . . 6
|
| 63 | breq1 4054 |
. . . . . . . 8
| |
| 64 | 29 | breq1d 4061 |
. . . . . . . 8
|
| 65 | 63, 64 | imbi12d 234 |
. . . . . . 7
|
| 66 | breq2 4055 |
. . . . . . . 8
| |
| 67 | fveq2 5589 |
. . . . . . . . 9
| |
| 68 | 67 | breq2d 4063 |
. . . . . . . 8
|
| 69 | 66, 68 | imbi12d 234 |
. . . . . . 7
|
| 70 | 65, 69 | rspc2va 2895 |
. . . . . 6
|
| 71 | 42, 51, 62, 70 | syl21anc 1249 |
. . . . 5
|
| 72 | 59, 71 | mpd 13 |
. . . 4
|
| 73 | comet.5 |
. . . . . . 7
| |
| 74 | 73 | ralrimivva 2589 |
. . . . . 6
|
| 75 | 74 | adantr 276 |
. . . . 5
|
| 76 | fvoveq1 5980 |
. . . . . . 7
| |
| 77 | fveq2 5589 |
. . . . . . . 8
| |
| 78 | 77 | oveq1d 5972 |
. . . . . . 7
|
| 79 | 76, 78 | breq12d 4064 |
. . . . . 6
|
| 80 | oveq2 5965 |
. . . . . . . 8
| |
| 81 | 80 | fveq2d 5593 |
. . . . . . 7
|
| 82 | fveq2 5589 |
. . . . . . . 8
| |
| 83 | 82 | oveq2d 5973 |
. . . . . . 7
|
| 84 | 81, 83 | breq12d 4064 |
. . . . . 6
|
| 85 | 79, 84 | rspc2va 2895 |
. . . . 5
|
| 86 | 47, 49, 75, 85 | syl21anc 1249 |
. . . 4
|
| 87 | 43, 52, 55, 72, 86 | xrletrd 9954 |
. . 3
|
| 88 | 27 | 3adantr3 1161 |
. . 3
|
| 89 | 8 | adantr 276 |
. . . . . 6
|
| 90 | 45, 46 | opelxpd 4716 |
. . . . . 6
|
| 91 | fvco3 5663 |
. . . . . 6
| |
| 92 | 89, 90, 91 | syl2anc 411 |
. . . . 5
|
| 93 | df-ov 5960 |
. . . . 5
| |
| 94 | df-ov 5960 |
. . . . . 6
| |
| 95 | 94 | fveq2i 5592 |
. . . . 5
|
| 96 | 92, 93, 95 | 3eqtr4g 2264 |
. . . 4
|
| 97 | 45, 48 | opelxpd 4716 |
. . . . . 6
|
| 98 | fvco3 5663 |
. . . . . 6
| |
| 99 | 89, 97, 98 | syl2anc 411 |
. . . . 5
|
| 100 | df-ov 5960 |
. . . . 5
| |
| 101 | df-ov 5960 |
. . . . . 6
| |
| 102 | 101 | fveq2i 5592 |
. . . . 5
|
| 103 | 99, 100, 102 | 3eqtr4g 2264 |
. . . 4
|
| 104 | 96, 103 | oveq12d 5975 |
. . 3
|
| 105 | 87, 88, 104 | 3brtr4d 4083 |
. 2
|
| 106 | 5, 20, 40, 105 | isxmetd 14894 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-po 4351 df-iso 4352 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-map 6750 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-2 9115 df-xadd 9915 df-icc 10037 df-xmet 14381 |
| This theorem is referenced by: bdxmet 15048 |
| Copyright terms: Public domain | W3C validator |