Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > comet | Unicode version |
Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
comet.1 | |
comet.2 | |
comet.3 | |
comet.4 | |
comet.5 |
Ref | Expression |
---|---|
comet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetrel 12983 | . . . 4 | |
2 | comet.1 | . . . 4 | |
3 | relelfvdm 5518 | . . . 4 | |
4 | 1, 2, 3 | sylancr 411 | . . 3 |
5 | 4 | elexd 2739 | . 2 |
6 | comet.2 | . . 3 | |
7 | xmetf 12990 | . . . . . 6 | |
8 | 2, 7 | syl 14 | . . . . 5 |
9 | 8 | ffnd 5338 | . . . 4 |
10 | xmetcl 12992 | . . . . . . . 8 | |
11 | xmetge0 13005 | . . . . . . . 8 | |
12 | elxrge0 9914 | . . . . . . . 8 | |
13 | 10, 11, 12 | sylanbrc 414 | . . . . . . 7 |
14 | 13 | 3expb 1194 | . . . . . 6 |
15 | 2, 14 | sylan 281 | . . . . 5 |
16 | 15 | ralrimivva 2548 | . . . 4 |
17 | ffnov 5946 | . . . 4 | |
18 | 9, 16, 17 | sylanbrc 414 | . . 3 |
19 | fco 5353 | . . 3 | |
20 | 6, 18, 19 | syl2anc 409 | . 2 |
21 | opelxpi 4636 | . . . . . 6 | |
22 | fvco3 5557 | . . . . . 6 | |
23 | 8, 21, 22 | syl2an 287 | . . . . 5 |
24 | df-ov 5845 | . . . . 5 | |
25 | df-ov 5845 | . . . . . 6 | |
26 | 25 | fveq2i 5489 | . . . . 5 |
27 | 23, 24, 26 | 3eqtr4g 2224 | . . . 4 |
28 | 27 | eqeq1d 2174 | . . 3 |
29 | fveq2 5486 | . . . . . 6 | |
30 | 29 | eqeq1d 2174 | . . . . 5 |
31 | eqeq1 2172 | . . . . 5 | |
32 | 30, 31 | bibi12d 234 | . . . 4 |
33 | comet.3 | . . . . . 6 | |
34 | 33 | ralrimiva 2539 | . . . . 5 |
35 | 34 | adantr 274 | . . . 4 |
36 | 32, 35, 15 | rspcdva 2835 | . . 3 |
37 | xmeteq0 12999 | . . . . 5 | |
38 | 37 | 3expb 1194 | . . . 4 |
39 | 2, 38 | sylan 281 | . . 3 |
40 | 28, 36, 39 | 3bitrd 213 | . 2 |
41 | 6 | adantr 274 | . . . . 5 |
42 | 15 | 3adantr3 1148 | . . . . 5 |
43 | 41, 42 | ffvelrnd 5621 | . . . 4 |
44 | 18 | adantr 274 | . . . . . . 7 |
45 | simpr3 995 | . . . . . . 7 | |
46 | simpr1 993 | . . . . . . 7 | |
47 | 44, 45, 46 | fovrnd 5986 | . . . . . 6 |
48 | simpr2 994 | . . . . . . 7 | |
49 | 44, 45, 48 | fovrnd 5986 | . . . . . 6 |
50 | ge0xaddcl 9919 | . . . . . 6 | |
51 | 47, 49, 50 | syl2anc 409 | . . . . 5 |
52 | 41, 51 | ffvelrnd 5621 | . . . 4 |
53 | 41, 47 | ffvelrnd 5621 | . . . . 5 |
54 | 41, 49 | ffvelrnd 5621 | . . . . 5 |
55 | 53, 54 | xaddcld 9820 | . . . 4 |
56 | 3anrot 973 | . . . . . . 7 | |
57 | xmettri2 13001 | . . . . . . 7 | |
58 | 56, 57 | sylan2br 286 | . . . . . 6 |
59 | 2, 58 | sylan 281 | . . . . 5 |
60 | comet.4 | . . . . . . . 8 | |
61 | 60 | ralrimivva 2548 | . . . . . . 7 |
62 | 61 | adantr 274 | . . . . . 6 |
63 | breq1 3985 | . . . . . . . 8 | |
64 | 29 | breq1d 3992 | . . . . . . . 8 |
65 | 63, 64 | imbi12d 233 | . . . . . . 7 |
66 | breq2 3986 | . . . . . . . 8 | |
67 | fveq2 5486 | . . . . . . . . 9 | |
68 | 67 | breq2d 3994 | . . . . . . . 8 |
69 | 66, 68 | imbi12d 233 | . . . . . . 7 |
70 | 65, 69 | rspc2va 2844 | . . . . . 6 |
71 | 42, 51, 62, 70 | syl21anc 1227 | . . . . 5 |
72 | 59, 71 | mpd 13 | . . . 4 |
73 | comet.5 | . . . . . . 7 | |
74 | 73 | ralrimivva 2548 | . . . . . 6 |
75 | 74 | adantr 274 | . . . . 5 |
76 | fvoveq1 5865 | . . . . . . 7 | |
77 | fveq2 5486 | . . . . . . . 8 | |
78 | 77 | oveq1d 5857 | . . . . . . 7 |
79 | 76, 78 | breq12d 3995 | . . . . . 6 |
80 | oveq2 5850 | . . . . . . . 8 | |
81 | 80 | fveq2d 5490 | . . . . . . 7 |
82 | fveq2 5486 | . . . . . . . 8 | |
83 | 82 | oveq2d 5858 | . . . . . . 7 |
84 | 81, 83 | breq12d 3995 | . . . . . 6 |
85 | 79, 84 | rspc2va 2844 | . . . . 5 |
86 | 47, 49, 75, 85 | syl21anc 1227 | . . . 4 |
87 | 43, 52, 55, 72, 86 | xrletrd 9748 | . . 3 |
88 | 27 | 3adantr3 1148 | . . 3 |
89 | 8 | adantr 274 | . . . . . 6 |
90 | 45, 46 | opelxpd 4637 | . . . . . 6 |
91 | fvco3 5557 | . . . . . 6 | |
92 | 89, 90, 91 | syl2anc 409 | . . . . 5 |
93 | df-ov 5845 | . . . . 5 | |
94 | df-ov 5845 | . . . . . 6 | |
95 | 94 | fveq2i 5489 | . . . . 5 |
96 | 92, 93, 95 | 3eqtr4g 2224 | . . . 4 |
97 | 45, 48 | opelxpd 4637 | . . . . . 6 |
98 | fvco3 5557 | . . . . . 6 | |
99 | 89, 97, 98 | syl2anc 409 | . . . . 5 |
100 | df-ov 5845 | . . . . 5 | |
101 | df-ov 5845 | . . . . . 6 | |
102 | 101 | fveq2i 5489 | . . . . 5 |
103 | 99, 100, 102 | 3eqtr4g 2224 | . . . 4 |
104 | 96, 103 | oveq12d 5860 | . . 3 |
105 | 87, 88, 104 | 3brtr4d 4014 | . 2 |
106 | 5, 20, 40, 105 | isxmetd 12987 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 cop 3579 class class class wbr 3982 cxp 4602 cdm 4604 ccom 4608 wrel 4609 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 cc0 7753 cpnf 7930 cxr 7932 cle 7934 cxad 9706 cicc 9827 cxmet 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-2 8916 df-xadd 9709 df-icc 9831 df-xmet 12628 |
This theorem is referenced by: bdxmet 13141 |
Copyright terms: Public domain | W3C validator |