| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > comet | Unicode version | ||
| Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| comet.1 |
|
| comet.2 |
|
| comet.3 |
|
| comet.4 |
|
| comet.5 |
|
| Ref | Expression |
|---|---|
| comet |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetrel 15011 |
. . . 4
| |
| 2 | comet.1 |
. . . 4
| |
| 3 | relelfvdm 5658 |
. . . 4
| |
| 4 | 1, 2, 3 | sylancr 414 |
. . 3
|
| 5 | 4 | elexd 2813 |
. 2
|
| 6 | comet.2 |
. . 3
| |
| 7 | xmetf 15018 |
. . . . . 6
| |
| 8 | 2, 7 | syl 14 |
. . . . 5
|
| 9 | 8 | ffnd 5473 |
. . . 4
|
| 10 | xmetcl 15020 |
. . . . . . . 8
| |
| 11 | xmetge0 15033 |
. . . . . . . 8
| |
| 12 | elxrge0 10170 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | sylanbrc 417 |
. . . . . . 7
|
| 14 | 13 | 3expb 1228 |
. . . . . 6
|
| 15 | 2, 14 | sylan 283 |
. . . . 5
|
| 16 | 15 | ralrimivva 2612 |
. . . 4
|
| 17 | ffnov 6107 |
. . . 4
| |
| 18 | 9, 16, 17 | sylanbrc 417 |
. . 3
|
| 19 | fco 5488 |
. . 3
| |
| 20 | 6, 18, 19 | syl2anc 411 |
. 2
|
| 21 | opelxpi 4750 |
. . . . . 6
| |
| 22 | fvco3 5704 |
. . . . . 6
| |
| 23 | 8, 21, 22 | syl2an 289 |
. . . . 5
|
| 24 | df-ov 6003 |
. . . . 5
| |
| 25 | df-ov 6003 |
. . . . . 6
| |
| 26 | 25 | fveq2i 5629 |
. . . . 5
|
| 27 | 23, 24, 26 | 3eqtr4g 2287 |
. . . 4
|
| 28 | 27 | eqeq1d 2238 |
. . 3
|
| 29 | fveq2 5626 |
. . . . . 6
| |
| 30 | 29 | eqeq1d 2238 |
. . . . 5
|
| 31 | eqeq1 2236 |
. . . . 5
| |
| 32 | 30, 31 | bibi12d 235 |
. . . 4
|
| 33 | comet.3 |
. . . . . 6
| |
| 34 | 33 | ralrimiva 2603 |
. . . . 5
|
| 35 | 34 | adantr 276 |
. . . 4
|
| 36 | 32, 35, 15 | rspcdva 2912 |
. . 3
|
| 37 | xmeteq0 15027 |
. . . . 5
| |
| 38 | 37 | 3expb 1228 |
. . . 4
|
| 39 | 2, 38 | sylan 283 |
. . 3
|
| 40 | 28, 36, 39 | 3bitrd 214 |
. 2
|
| 41 | 6 | adantr 276 |
. . . . 5
|
| 42 | 15 | 3adantr3 1182 |
. . . . 5
|
| 43 | 41, 42 | ffvelcdmd 5770 |
. . . 4
|
| 44 | 18 | adantr 276 |
. . . . . . 7
|
| 45 | simpr3 1029 |
. . . . . . 7
| |
| 46 | simpr1 1027 |
. . . . . . 7
| |
| 47 | 44, 45, 46 | fovcdmd 6149 |
. . . . . 6
|
| 48 | simpr2 1028 |
. . . . . . 7
| |
| 49 | 44, 45, 48 | fovcdmd 6149 |
. . . . . 6
|
| 50 | ge0xaddcl 10175 |
. . . . . 6
| |
| 51 | 47, 49, 50 | syl2anc 411 |
. . . . 5
|
| 52 | 41, 51 | ffvelcdmd 5770 |
. . . 4
|
| 53 | 41, 47 | ffvelcdmd 5770 |
. . . . 5
|
| 54 | 41, 49 | ffvelcdmd 5770 |
. . . . 5
|
| 55 | 53, 54 | xaddcld 10076 |
. . . 4
|
| 56 | 3anrot 1007 |
. . . . . . 7
| |
| 57 | xmettri2 15029 |
. . . . . . 7
| |
| 58 | 56, 57 | sylan2br 288 |
. . . . . 6
|
| 59 | 2, 58 | sylan 283 |
. . . . 5
|
| 60 | comet.4 |
. . . . . . . 8
| |
| 61 | 60 | ralrimivva 2612 |
. . . . . . 7
|
| 62 | 61 | adantr 276 |
. . . . . 6
|
| 63 | breq1 4085 |
. . . . . . . 8
| |
| 64 | 29 | breq1d 4092 |
. . . . . . . 8
|
| 65 | 63, 64 | imbi12d 234 |
. . . . . . 7
|
| 66 | breq2 4086 |
. . . . . . . 8
| |
| 67 | fveq2 5626 |
. . . . . . . . 9
| |
| 68 | 67 | breq2d 4094 |
. . . . . . . 8
|
| 69 | 66, 68 | imbi12d 234 |
. . . . . . 7
|
| 70 | 65, 69 | rspc2va 2921 |
. . . . . 6
|
| 71 | 42, 51, 62, 70 | syl21anc 1270 |
. . . . 5
|
| 72 | 59, 71 | mpd 13 |
. . . 4
|
| 73 | comet.5 |
. . . . . . 7
| |
| 74 | 73 | ralrimivva 2612 |
. . . . . 6
|
| 75 | 74 | adantr 276 |
. . . . 5
|
| 76 | fvoveq1 6023 |
. . . . . . 7
| |
| 77 | fveq2 5626 |
. . . . . . . 8
| |
| 78 | 77 | oveq1d 6015 |
. . . . . . 7
|
| 79 | 76, 78 | breq12d 4095 |
. . . . . 6
|
| 80 | oveq2 6008 |
. . . . . . . 8
| |
| 81 | 80 | fveq2d 5630 |
. . . . . . 7
|
| 82 | fveq2 5626 |
. . . . . . . 8
| |
| 83 | 82 | oveq2d 6016 |
. . . . . . 7
|
| 84 | 81, 83 | breq12d 4095 |
. . . . . 6
|
| 85 | 79, 84 | rspc2va 2921 |
. . . . 5
|
| 86 | 47, 49, 75, 85 | syl21anc 1270 |
. . . 4
|
| 87 | 43, 52, 55, 72, 86 | xrletrd 10004 |
. . 3
|
| 88 | 27 | 3adantr3 1182 |
. . 3
|
| 89 | 8 | adantr 276 |
. . . . . 6
|
| 90 | 45, 46 | opelxpd 4751 |
. . . . . 6
|
| 91 | fvco3 5704 |
. . . . . 6
| |
| 92 | 89, 90, 91 | syl2anc 411 |
. . . . 5
|
| 93 | df-ov 6003 |
. . . . 5
| |
| 94 | df-ov 6003 |
. . . . . 6
| |
| 95 | 94 | fveq2i 5629 |
. . . . 5
|
| 96 | 92, 93, 95 | 3eqtr4g 2287 |
. . . 4
|
| 97 | 45, 48 | opelxpd 4751 |
. . . . . 6
|
| 98 | fvco3 5704 |
. . . . . 6
| |
| 99 | 89, 97, 98 | syl2anc 411 |
. . . . 5
|
| 100 | df-ov 6003 |
. . . . 5
| |
| 101 | df-ov 6003 |
. . . . . 6
| |
| 102 | 101 | fveq2i 5629 |
. . . . 5
|
| 103 | 99, 100, 102 | 3eqtr4g 2287 |
. . . 4
|
| 104 | 96, 103 | oveq12d 6018 |
. . 3
|
| 105 | 87, 88, 104 | 3brtr4d 4114 |
. 2
|
| 106 | 5, 20, 40, 105 | isxmetd 15015 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-2 9165 df-xadd 9965 df-icc 10087 df-xmet 14502 |
| This theorem is referenced by: bdxmet 15169 |
| Copyright terms: Public domain | W3C validator |