| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > comet | Unicode version | ||
| Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| comet.1 | 
 | 
| comet.2 | 
 | 
| comet.3 | 
 | 
| comet.4 | 
 | 
| comet.5 | 
 | 
| Ref | Expression | 
|---|---|
| comet | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xmetrel 14579 | 
. . . 4
 | |
| 2 | comet.1 | 
. . . 4
 | |
| 3 | relelfvdm 5590 | 
. . . 4
 | |
| 4 | 1, 2, 3 | sylancr 414 | 
. . 3
 | 
| 5 | 4 | elexd 2776 | 
. 2
 | 
| 6 | comet.2 | 
. . 3
 | |
| 7 | xmetf 14586 | 
. . . . . 6
 | |
| 8 | 2, 7 | syl 14 | 
. . . . 5
 | 
| 9 | 8 | ffnd 5408 | 
. . . 4
 | 
| 10 | xmetcl 14588 | 
. . . . . . . 8
 | |
| 11 | xmetge0 14601 | 
. . . . . . . 8
 | |
| 12 | elxrge0 10053 | 
. . . . . . . 8
 | |
| 13 | 10, 11, 12 | sylanbrc 417 | 
. . . . . . 7
 | 
| 14 | 13 | 3expb 1206 | 
. . . . . 6
 | 
| 15 | 2, 14 | sylan 283 | 
. . . . 5
 | 
| 16 | 15 | ralrimivva 2579 | 
. . . 4
 | 
| 17 | ffnov 6026 | 
. . . 4
 | |
| 18 | 9, 16, 17 | sylanbrc 417 | 
. . 3
 | 
| 19 | fco 5423 | 
. . 3
 | |
| 20 | 6, 18, 19 | syl2anc 411 | 
. 2
 | 
| 21 | opelxpi 4695 | 
. . . . . 6
 | |
| 22 | fvco3 5632 | 
. . . . . 6
 | |
| 23 | 8, 21, 22 | syl2an 289 | 
. . . . 5
 | 
| 24 | df-ov 5925 | 
. . . . 5
 | |
| 25 | df-ov 5925 | 
. . . . . 6
 | |
| 26 | 25 | fveq2i 5561 | 
. . . . 5
 | 
| 27 | 23, 24, 26 | 3eqtr4g 2254 | 
. . . 4
 | 
| 28 | 27 | eqeq1d 2205 | 
. . 3
 | 
| 29 | fveq2 5558 | 
. . . . . 6
 | |
| 30 | 29 | eqeq1d 2205 | 
. . . . 5
 | 
| 31 | eqeq1 2203 | 
. . . . 5
 | |
| 32 | 30, 31 | bibi12d 235 | 
. . . 4
 | 
| 33 | comet.3 | 
. . . . . 6
 | |
| 34 | 33 | ralrimiva 2570 | 
. . . . 5
 | 
| 35 | 34 | adantr 276 | 
. . . 4
 | 
| 36 | 32, 35, 15 | rspcdva 2873 | 
. . 3
 | 
| 37 | xmeteq0 14595 | 
. . . . 5
 | |
| 38 | 37 | 3expb 1206 | 
. . . 4
 | 
| 39 | 2, 38 | sylan 283 | 
. . 3
 | 
| 40 | 28, 36, 39 | 3bitrd 214 | 
. 2
 | 
| 41 | 6 | adantr 276 | 
. . . . 5
 | 
| 42 | 15 | 3adantr3 1160 | 
. . . . 5
 | 
| 43 | 41, 42 | ffvelcdmd 5698 | 
. . . 4
 | 
| 44 | 18 | adantr 276 | 
. . . . . . 7
 | 
| 45 | simpr3 1007 | 
. . . . . . 7
 | |
| 46 | simpr1 1005 | 
. . . . . . 7
 | |
| 47 | 44, 45, 46 | fovcdmd 6068 | 
. . . . . 6
 | 
| 48 | simpr2 1006 | 
. . . . . . 7
 | |
| 49 | 44, 45, 48 | fovcdmd 6068 | 
. . . . . 6
 | 
| 50 | ge0xaddcl 10058 | 
. . . . . 6
 | |
| 51 | 47, 49, 50 | syl2anc 411 | 
. . . . 5
 | 
| 52 | 41, 51 | ffvelcdmd 5698 | 
. . . 4
 | 
| 53 | 41, 47 | ffvelcdmd 5698 | 
. . . . 5
 | 
| 54 | 41, 49 | ffvelcdmd 5698 | 
. . . . 5
 | 
| 55 | 53, 54 | xaddcld 9959 | 
. . . 4
 | 
| 56 | 3anrot 985 | 
. . . . . . 7
 | |
| 57 | xmettri2 14597 | 
. . . . . . 7
 | |
| 58 | 56, 57 | sylan2br 288 | 
. . . . . 6
 | 
| 59 | 2, 58 | sylan 283 | 
. . . . 5
 | 
| 60 | comet.4 | 
. . . . . . . 8
 | |
| 61 | 60 | ralrimivva 2579 | 
. . . . . . 7
 | 
| 62 | 61 | adantr 276 | 
. . . . . 6
 | 
| 63 | breq1 4036 | 
. . . . . . . 8
 | |
| 64 | 29 | breq1d 4043 | 
. . . . . . . 8
 | 
| 65 | 63, 64 | imbi12d 234 | 
. . . . . . 7
 | 
| 66 | breq2 4037 | 
. . . . . . . 8
 | |
| 67 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 68 | 67 | breq2d 4045 | 
. . . . . . . 8
 | 
| 69 | 66, 68 | imbi12d 234 | 
. . . . . . 7
 | 
| 70 | 65, 69 | rspc2va 2882 | 
. . . . . 6
 | 
| 71 | 42, 51, 62, 70 | syl21anc 1248 | 
. . . . 5
 | 
| 72 | 59, 71 | mpd 13 | 
. . . 4
 | 
| 73 | comet.5 | 
. . . . . . 7
 | |
| 74 | 73 | ralrimivva 2579 | 
. . . . . 6
 | 
| 75 | 74 | adantr 276 | 
. . . . 5
 | 
| 76 | fvoveq1 5945 | 
. . . . . . 7
 | |
| 77 | fveq2 5558 | 
. . . . . . . 8
 | |
| 78 | 77 | oveq1d 5937 | 
. . . . . . 7
 | 
| 79 | 76, 78 | breq12d 4046 | 
. . . . . 6
 | 
| 80 | oveq2 5930 | 
. . . . . . . 8
 | |
| 81 | 80 | fveq2d 5562 | 
. . . . . . 7
 | 
| 82 | fveq2 5558 | 
. . . . . . . 8
 | |
| 83 | 82 | oveq2d 5938 | 
. . . . . . 7
 | 
| 84 | 81, 83 | breq12d 4046 | 
. . . . . 6
 | 
| 85 | 79, 84 | rspc2va 2882 | 
. . . . 5
 | 
| 86 | 47, 49, 75, 85 | syl21anc 1248 | 
. . . 4
 | 
| 87 | 43, 52, 55, 72, 86 | xrletrd 9887 | 
. . 3
 | 
| 88 | 27 | 3adantr3 1160 | 
. . 3
 | 
| 89 | 8 | adantr 276 | 
. . . . . 6
 | 
| 90 | 45, 46 | opelxpd 4696 | 
. . . . . 6
 | 
| 91 | fvco3 5632 | 
. . . . . 6
 | |
| 92 | 89, 90, 91 | syl2anc 411 | 
. . . . 5
 | 
| 93 | df-ov 5925 | 
. . . . 5
 | |
| 94 | df-ov 5925 | 
. . . . . 6
 | |
| 95 | 94 | fveq2i 5561 | 
. . . . 5
 | 
| 96 | 92, 93, 95 | 3eqtr4g 2254 | 
. . . 4
 | 
| 97 | 45, 48 | opelxpd 4696 | 
. . . . . 6
 | 
| 98 | fvco3 5632 | 
. . . . . 6
 | |
| 99 | 89, 97, 98 | syl2anc 411 | 
. . . . 5
 | 
| 100 | df-ov 5925 | 
. . . . 5
 | |
| 101 | df-ov 5925 | 
. . . . . 6
 | |
| 102 | 101 | fveq2i 5561 | 
. . . . 5
 | 
| 103 | 99, 100, 102 | 3eqtr4g 2254 | 
. . . 4
 | 
| 104 | 96, 103 | oveq12d 5940 | 
. . 3
 | 
| 105 | 87, 88, 104 | 3brtr4d 4065 | 
. 2
 | 
| 106 | 5, 20, 40, 105 | isxmetd 14583 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-2 9049 df-xadd 9848 df-icc 9970 df-xmet 14100 | 
| This theorem is referenced by: bdxmet 14737 | 
| Copyright terms: Public domain | W3C validator |