ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  comet Unicode version

Theorem comet 12579
Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
comet.1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
comet.2  |-  ( ph  ->  F : ( 0 [,] +oo ) --> RR* )
comet.3  |-  ( (
ph  /\  x  e.  ( 0 [,] +oo ) )  ->  (
( F `  x
)  =  0  <->  x  =  0 ) )
comet.4  |-  ( (
ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo )
) )  ->  (
x  <_  y  ->  ( F `  x )  <_  ( F `  y ) ) )
comet.5  |-  ( (
ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo )
) )  ->  ( F `  ( x +e y ) )  <_  ( ( F `  x ) +e ( F `
 y ) ) )
Assertion
Ref Expression
comet  |-  ( ph  ->  ( F  o.  D
)  e.  ( *Met `  X ) )
Distinct variable groups:    x, y, D   
x, F, y    ph, x, y
Allowed substitution hints:    X( x, y)

Proof of Theorem comet
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetrel 12423 . . . 4  |-  Rel  *Met
2 comet.1 . . . 4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
3 relelfvdm 5421 . . . 4  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
41, 2, 3sylancr 410 . . 3  |-  ( ph  ->  X  e.  dom  *Met )
54elexd 2673 . 2  |-  ( ph  ->  X  e.  _V )
6 comet.2 . . 3  |-  ( ph  ->  F : ( 0 [,] +oo ) --> RR* )
7 xmetf 12430 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
82, 7syl 14 . . . . 5  |-  ( ph  ->  D : ( X  X.  X ) --> RR* )
98ffnd 5243 . . . 4  |-  ( ph  ->  D  Fn  ( X  X.  X ) )
10 xmetcl 12432 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  a  e.  X  /\  b  e.  X
)  ->  ( a D b )  e. 
RR* )
11 xmetge0 12445 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  a  e.  X  /\  b  e.  X
)  ->  0  <_  ( a D b ) )
12 elxrge0 9716 . . . . . . . 8  |-  ( ( a D b )  e.  ( 0 [,] +oo )  <->  ( ( a D b )  e. 
RR*  /\  0  <_  ( a D b ) ) )
1310, 11, 12sylanbrc 413 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  a  e.  X  /\  b  e.  X
)  ->  ( a D b )  e.  ( 0 [,] +oo ) )
14133expb 1167 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( a D b )  e.  ( 0 [,] +oo ) )
152, 14sylan 281 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( a D b )  e.  ( 0 [,] +oo ) )
1615ralrimivva 2491 . . . 4  |-  ( ph  ->  A. a  e.  X  A. b  e.  X  ( a D b )  e.  ( 0 [,] +oo ) )
17 ffnov 5843 . . . 4  |-  ( D : ( X  X.  X ) --> ( 0 [,] +oo )  <->  ( D  Fn  ( X  X.  X
)  /\  A. a  e.  X  A. b  e.  X  ( a D b )  e.  ( 0 [,] +oo ) ) )
189, 16, 17sylanbrc 413 . . 3  |-  ( ph  ->  D : ( X  X.  X ) --> ( 0 [,] +oo )
)
19 fco 5258 . . 3  |-  ( ( F : ( 0 [,] +oo ) --> RR* 
/\  D : ( X  X.  X ) --> ( 0 [,] +oo ) )  ->  ( F  o.  D ) : ( X  X.  X ) --> RR* )
206, 18, 19syl2anc 408 . 2  |-  ( ph  ->  ( F  o.  D
) : ( X  X.  X ) --> RR* )
21 opelxpi 4541 . . . . . 6  |-  ( ( a  e.  X  /\  b  e.  X )  -> 
<. a ,  b >.  e.  ( X  X.  X
) )
22 fvco3 5460 . . . . . 6  |-  ( ( D : ( X  X.  X ) --> RR* 
/\  <. a ,  b
>.  e.  ( X  X.  X ) )  -> 
( ( F  o.  D ) `  <. a ,  b >. )  =  ( F `  ( D `  <. a ,  b >. )
) )
238, 21, 22syl2an 287 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( F  o.  D ) `  <. a ,  b >. )  =  ( F `  ( D `  <. a ,  b >. )
) )
24 df-ov 5745 . . . . 5  |-  ( a ( F  o.  D
) b )  =  ( ( F  o.  D ) `  <. a ,  b >. )
25 df-ov 5745 . . . . . 6  |-  ( a D b )  =  ( D `  <. a ,  b >. )
2625fveq2i 5392 . . . . 5  |-  ( F `
 ( a D b ) )  =  ( F `  ( D `  <. a ,  b >. ) )
2723, 24, 263eqtr4g 2175 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( a ( F  o.  D ) b )  =  ( F `
 ( a D b ) ) )
2827eqeq1d 2126 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( a ( F  o.  D ) b )  =  0  <-> 
( F `  (
a D b ) )  =  0 ) )
29 fveq2 5389 . . . . . 6  |-  ( x  =  ( a D b )  ->  ( F `  x )  =  ( F `  ( a D b ) ) )
3029eqeq1d 2126 . . . . 5  |-  ( x  =  ( a D b )  ->  (
( F `  x
)  =  0  <->  ( F `  ( a D b ) )  =  0 ) )
31 eqeq1 2124 . . . . 5  |-  ( x  =  ( a D b )  ->  (
x  =  0  <->  (
a D b )  =  0 ) )
3230, 31bibi12d 234 . . . 4  |-  ( x  =  ( a D b )  ->  (
( ( F `  x )  =  0  <-> 
x  =  0 )  <-> 
( ( F `  ( a D b ) )  =  0  <-> 
( a D b )  =  0 ) ) )
33 comet.3 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 [,] +oo ) )  ->  (
( F `  x
)  =  0  <->  x  =  0 ) )
3433ralrimiva 2482 . . . . 5  |-  ( ph  ->  A. x  e.  ( 0 [,] +oo )
( ( F `  x )  =  0  <-> 
x  =  0 ) )
3534adantr 274 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  ->  A. x  e.  (
0 [,] +oo )
( ( F `  x )  =  0  <-> 
x  =  0 ) )
3632, 35, 15rspcdva 2768 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( F `  ( a D b ) )  =  0  <-> 
( a D b )  =  0 ) )
37 xmeteq0 12439 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  a  e.  X  /\  b  e.  X
)  ->  ( (
a D b )  =  0  <->  a  =  b ) )
38373expb 1167 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( a D b )  =  0  <-> 
a  =  b ) )
392, 38sylan 281 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( a D b )  =  0  <-> 
a  =  b ) )
4028, 36, 393bitrd 213 . 2  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( a ( F  o.  D ) b )  =  0  <-> 
a  =  b ) )
416adantr 274 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  F : ( 0 [,] +oo ) --> RR* )
42153adantr3 1127 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( a D b )  e.  ( 0 [,] +oo ) )
4341, 42ffvelrnd 5524 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
a D b ) )  e.  RR* )
4418adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  D : ( X  X.  X ) --> ( 0 [,] +oo ) )
45 simpr3 974 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
c  e.  X )
46 simpr1 972 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
a  e.  X )
4744, 45, 46fovrnd 5883 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( c D a )  e.  ( 0 [,] +oo ) )
48 simpr2 973 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
b  e.  X )
4944, 45, 48fovrnd 5883 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( c D b )  e.  ( 0 [,] +oo ) )
50 ge0xaddcl 9721 . . . . . 6  |-  ( ( ( c D a )  e.  ( 0 [,] +oo )  /\  ( c D b )  e.  ( 0 [,] +oo ) )  ->  ( ( c D a ) +e ( c D b ) )  e.  ( 0 [,] +oo ) )
5147, 49, 50syl2anc 408 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( ( c D a ) +e
( c D b ) )  e.  ( 0 [,] +oo )
)
5241, 51ffvelrnd 5524 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
( c D a ) +e ( c D b ) ) )  e.  RR* )
5341, 47ffvelrnd 5524 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
c D a ) )  e.  RR* )
5441, 49ffvelrnd 5524 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
c D b ) )  e.  RR* )
5553, 54xaddcld 9622 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( ( F `  ( c D a ) ) +e
( F `  (
c D b ) ) )  e.  RR* )
56 3anrot 952 . . . . . . 7  |-  ( ( c  e.  X  /\  a  e.  X  /\  b  e.  X )  <->  ( a  e.  X  /\  b  e.  X  /\  c  e.  X )
)
57 xmettri2 12441 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  ( c  e.  X  /\  a  e.  X  /\  b  e.  X ) )  -> 
( a D b )  <_  ( (
c D a ) +e ( c D b ) ) )
5856, 57sylan2br 286 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( a D b )  <_  ( (
c D a ) +e ( c D b ) ) )
592, 58sylan 281 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( a D b )  <_  ( (
c D a ) +e ( c D b ) ) )
60 comet.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo )
) )  ->  (
x  <_  y  ->  ( F `  x )  <_  ( F `  y ) ) )
6160ralrimivva 2491 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( 0 [,] +oo ) A. y  e.  (
0 [,] +oo )
( x  <_  y  ->  ( F `  x
)  <_  ( F `  y ) ) )
6261adantr 274 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  A. x  e.  (
0 [,] +oo ) A. y  e.  (
0 [,] +oo )
( x  <_  y  ->  ( F `  x
)  <_  ( F `  y ) ) )
63 breq1 3902 . . . . . . . 8  |-  ( x  =  ( a D b )  ->  (
x  <_  y  <->  ( a D b )  <_ 
y ) )
6429breq1d 3909 . . . . . . . 8  |-  ( x  =  ( a D b )  ->  (
( F `  x
)  <_  ( F `  y )  <->  ( F `  ( a D b ) )  <_  ( F `  y )
) )
6563, 64imbi12d 233 . . . . . . 7  |-  ( x  =  ( a D b )  ->  (
( x  <_  y  ->  ( F `  x
)  <_  ( F `  y ) )  <->  ( (
a D b )  <_  y  ->  ( F `  ( a D b ) )  <_  ( F `  y ) ) ) )
66 breq2 3903 . . . . . . . 8  |-  ( y  =  ( ( c D a ) +e ( c D b ) )  -> 
( ( a D b )  <_  y  <->  ( a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) )
67 fveq2 5389 . . . . . . . . 9  |-  ( y  =  ( ( c D a ) +e ( c D b ) )  -> 
( F `  y
)  =  ( F `
 ( ( c D a ) +e ( c D b ) ) ) )
6867breq2d 3911 . . . . . . . 8  |-  ( y  =  ( ( c D a ) +e ( c D b ) )  -> 
( ( F `  ( a D b ) )  <_  ( F `  y )  <->  ( F `  ( a D b ) )  <_  ( F `  ( ( c D a ) +e
( c D b ) ) ) ) )
6966, 68imbi12d 233 . . . . . . 7  |-  ( y  =  ( ( c D a ) +e ( c D b ) )  -> 
( ( ( a D b )  <_ 
y  ->  ( F `  ( a D b ) )  <_  ( F `  y )
)  <->  ( ( a D b )  <_ 
( ( c D a ) +e
( c D b ) )  ->  ( F `  ( a D b ) )  <_  ( F `  ( ( c D a ) +e
( c D b ) ) ) ) ) )
7065, 69rspc2va 2777 . . . . . 6  |-  ( ( ( ( a D b )  e.  ( 0 [,] +oo )  /\  ( ( c D a ) +e
( c D b ) )  e.  ( 0 [,] +oo )
)  /\  A. x  e.  ( 0 [,] +oo ) A. y  e.  ( 0 [,] +oo )
( x  <_  y  ->  ( F `  x
)  <_  ( F `  y ) ) )  ->  ( ( a D b )  <_ 
( ( c D a ) +e
( c D b ) )  ->  ( F `  ( a D b ) )  <_  ( F `  ( ( c D a ) +e
( c D b ) ) ) ) )
7142, 51, 62, 70syl21anc 1200 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( ( a D b )  <_  (
( c D a ) +e ( c D b ) )  ->  ( F `  ( a D b ) )  <_  ( F `  ( (
c D a ) +e ( c D b ) ) ) ) )
7259, 71mpd 13 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
a D b ) )  <_  ( F `  ( ( c D a ) +e
( c D b ) ) ) )
73 comet.5 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo )
) )  ->  ( F `  ( x +e y ) )  <_  ( ( F `  x ) +e ( F `
 y ) ) )
7473ralrimivva 2491 . . . . . 6  |-  ( ph  ->  A. x  e.  ( 0 [,] +oo ) A. y  e.  (
0 [,] +oo )
( F `  (
x +e y ) )  <_  (
( F `  x
) +e ( F `  y ) ) )
7574adantr 274 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  A. x  e.  (
0 [,] +oo ) A. y  e.  (
0 [,] +oo )
( F `  (
x +e y ) )  <_  (
( F `  x
) +e ( F `  y ) ) )
76 fvoveq1 5765 . . . . . . 7  |-  ( x  =  ( c D a )  ->  ( F `  ( x +e y ) )  =  ( F `
 ( ( c D a ) +e y ) ) )
77 fveq2 5389 . . . . . . . 8  |-  ( x  =  ( c D a )  ->  ( F `  x )  =  ( F `  ( c D a ) ) )
7877oveq1d 5757 . . . . . . 7  |-  ( x  =  ( c D a )  ->  (
( F `  x
) +e ( F `  y ) )  =  ( ( F `  ( c D a ) ) +e ( F `
 y ) ) )
7976, 78breq12d 3912 . . . . . 6  |-  ( x  =  ( c D a )  ->  (
( F `  (
x +e y ) )  <_  (
( F `  x
) +e ( F `  y ) )  <->  ( F `  ( ( c D a ) +e
y ) )  <_ 
( ( F `  ( c D a ) ) +e
( F `  y
) ) ) )
80 oveq2 5750 . . . . . . . 8  |-  ( y  =  ( c D b )  ->  (
( c D a ) +e y )  =  ( ( c D a ) +e ( c D b ) ) )
8180fveq2d 5393 . . . . . . 7  |-  ( y  =  ( c D b )  ->  ( F `  ( (
c D a ) +e y ) )  =  ( F `
 ( ( c D a ) +e ( c D b ) ) ) )
82 fveq2 5389 . . . . . . . 8  |-  ( y  =  ( c D b )  ->  ( F `  y )  =  ( F `  ( c D b ) ) )
8382oveq2d 5758 . . . . . . 7  |-  ( y  =  ( c D b )  ->  (
( F `  (
c D a ) ) +e ( F `  y ) )  =  ( ( F `  ( c D a ) ) +e ( F `
 ( c D b ) ) ) )
8481, 83breq12d 3912 . . . . . 6  |-  ( y  =  ( c D b )  ->  (
( F `  (
( c D a ) +e y ) )  <_  (
( F `  (
c D a ) ) +e ( F `  y ) )  <->  ( F `  ( ( c D a ) +e
( c D b ) ) )  <_ 
( ( F `  ( c D a ) ) +e
( F `  (
c D b ) ) ) ) )
8579, 84rspc2va 2777 . . . . 5  |-  ( ( ( ( c D a )  e.  ( 0 [,] +oo )  /\  ( c D b )  e.  ( 0 [,] +oo ) )  /\  A. x  e.  ( 0 [,] +oo ) A. y  e.  ( 0 [,] +oo )
( F `  (
x +e y ) )  <_  (
( F `  x
) +e ( F `  y ) ) )  ->  ( F `  ( (
c D a ) +e ( c D b ) ) )  <_  ( ( F `  ( c D a ) ) +e ( F `
 ( c D b ) ) ) )
8647, 49, 75, 85syl21anc 1200 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
( c D a ) +e ( c D b ) ) )  <_  (
( F `  (
c D a ) ) +e ( F `  ( c D b ) ) ) )
8743, 52, 55, 72, 86xrletrd 9550 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
a D b ) )  <_  ( ( F `  ( c D a ) ) +e ( F `
 ( c D b ) ) ) )
88273adantr3 1127 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( a ( F  o.  D ) b )  =  ( F `
 ( a D b ) ) )
898adantr 274 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  D : ( X  X.  X ) --> RR* )
9045, 46opelxpd 4542 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  <. c ,  a >.  e.  ( X  X.  X
) )
91 fvco3 5460 . . . . . 6  |-  ( ( D : ( X  X.  X ) --> RR* 
/\  <. c ,  a
>.  e.  ( X  X.  X ) )  -> 
( ( F  o.  D ) `  <. c ,  a >. )  =  ( F `  ( D `  <. c ,  a >. )
) )
9289, 90, 91syl2anc 408 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( ( F  o.  D ) `  <. c ,  a >. )  =  ( F `  ( D `  <. c ,  a >. )
) )
93 df-ov 5745 . . . . 5  |-  ( c ( F  o.  D
) a )  =  ( ( F  o.  D ) `  <. c ,  a >. )
94 df-ov 5745 . . . . . 6  |-  ( c D a )  =  ( D `  <. c ,  a >. )
9594fveq2i 5392 . . . . 5  |-  ( F `
 ( c D a ) )  =  ( F `  ( D `  <. c ,  a >. ) )
9692, 93, 953eqtr4g 2175 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( c ( F  o.  D ) a )  =  ( F `
 ( c D a ) ) )
9745, 48opelxpd 4542 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  <. c ,  b >.  e.  ( X  X.  X
) )
98 fvco3 5460 . . . . . 6  |-  ( ( D : ( X  X.  X ) --> RR* 
/\  <. c ,  b
>.  e.  ( X  X.  X ) )  -> 
( ( F  o.  D ) `  <. c ,  b >. )  =  ( F `  ( D `  <. c ,  b >. )
) )
9989, 97, 98syl2anc 408 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( ( F  o.  D ) `  <. c ,  b >. )  =  ( F `  ( D `  <. c ,  b >. )
) )
100 df-ov 5745 . . . . 5  |-  ( c ( F  o.  D
) b )  =  ( ( F  o.  D ) `  <. c ,  b >. )
101 df-ov 5745 . . . . . 6  |-  ( c D b )  =  ( D `  <. c ,  b >. )
102101fveq2i 5392 . . . . 5  |-  ( F `
 ( c D b ) )  =  ( F `  ( D `  <. c ,  b >. ) )
10399, 100, 1023eqtr4g 2175 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( c ( F  o.  D ) b )  =  ( F `
 ( c D b ) ) )
10496, 103oveq12d 5760 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( ( c ( F  o.  D ) a ) +e
( c ( F  o.  D ) b ) )  =  ( ( F `  (
c D a ) ) +e ( F `  ( c D b ) ) ) )
10587, 88, 1043brtr4d 3930 . 2  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( a ( F  o.  D ) b )  <_  ( (
c ( F  o.  D ) a ) +e ( c ( F  o.  D
) b ) ) )
1065, 20, 40, 105isxmetd 12427 1  |-  ( ph  ->  ( F  o.  D
)  e.  ( *Met `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    = wceq 1316    e. wcel 1465   A.wral 2393   <.cop 3500   class class class wbr 3899    X. cxp 4507   dom cdm 4509    o. ccom 4513   Rel wrel 4514    Fn wfn 5088   -->wf 5089   ` cfv 5093  (class class class)co 5742   0cc0 7588   +oocpnf 7765   RR*cxr 7767    <_ cle 7769   +ecxad 9512   [,]cicc 9629   *Metcxmet 12060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-map 6512  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-2 8743  df-xadd 9515  df-icc 9633  df-xmet 12068
This theorem is referenced by:  bdxmet  12581
  Copyright terms: Public domain W3C validator