ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  comet Unicode version

Theorem comet 13579
Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
comet.1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
comet.2  |-  ( ph  ->  F : ( 0 [,] +oo ) --> RR* )
comet.3  |-  ( (
ph  /\  x  e.  ( 0 [,] +oo ) )  ->  (
( F `  x
)  =  0  <->  x  =  0 ) )
comet.4  |-  ( (
ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo )
) )  ->  (
x  <_  y  ->  ( F `  x )  <_  ( F `  y ) ) )
comet.5  |-  ( (
ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo )
) )  ->  ( F `  ( x +e y ) )  <_  ( ( F `  x ) +e ( F `
 y ) ) )
Assertion
Ref Expression
comet  |-  ( ph  ->  ( F  o.  D
)  e.  ( *Met `  X ) )
Distinct variable groups:    x, y, D   
x, F, y    ph, x, y
Allowed substitution hints:    X( x, y)

Proof of Theorem comet
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetrel 13423 . . . 4  |-  Rel  *Met
2 comet.1 . . . 4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
3 relelfvdm 5539 . . . 4  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
41, 2, 3sylancr 414 . . 3  |-  ( ph  ->  X  e.  dom  *Met )
54elexd 2748 . 2  |-  ( ph  ->  X  e.  _V )
6 comet.2 . . 3  |-  ( ph  ->  F : ( 0 [,] +oo ) --> RR* )
7 xmetf 13430 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
82, 7syl 14 . . . . 5  |-  ( ph  ->  D : ( X  X.  X ) --> RR* )
98ffnd 5358 . . . 4  |-  ( ph  ->  D  Fn  ( X  X.  X ) )
10 xmetcl 13432 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  a  e.  X  /\  b  e.  X
)  ->  ( a D b )  e. 
RR* )
11 xmetge0 13445 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  a  e.  X  /\  b  e.  X
)  ->  0  <_  ( a D b ) )
12 elxrge0 9949 . . . . . . . 8  |-  ( ( a D b )  e.  ( 0 [,] +oo )  <->  ( ( a D b )  e. 
RR*  /\  0  <_  ( a D b ) ) )
1310, 11, 12sylanbrc 417 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  a  e.  X  /\  b  e.  X
)  ->  ( a D b )  e.  ( 0 [,] +oo ) )
14133expb 1204 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( a D b )  e.  ( 0 [,] +oo ) )
152, 14sylan 283 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( a D b )  e.  ( 0 [,] +oo ) )
1615ralrimivva 2557 . . . 4  |-  ( ph  ->  A. a  e.  X  A. b  e.  X  ( a D b )  e.  ( 0 [,] +oo ) )
17 ffnov 5969 . . . 4  |-  ( D : ( X  X.  X ) --> ( 0 [,] +oo )  <->  ( D  Fn  ( X  X.  X
)  /\  A. a  e.  X  A. b  e.  X  ( a D b )  e.  ( 0 [,] +oo ) ) )
189, 16, 17sylanbrc 417 . . 3  |-  ( ph  ->  D : ( X  X.  X ) --> ( 0 [,] +oo )
)
19 fco 5373 . . 3  |-  ( ( F : ( 0 [,] +oo ) --> RR* 
/\  D : ( X  X.  X ) --> ( 0 [,] +oo ) )  ->  ( F  o.  D ) : ( X  X.  X ) --> RR* )
206, 18, 19syl2anc 411 . 2  |-  ( ph  ->  ( F  o.  D
) : ( X  X.  X ) --> RR* )
21 opelxpi 4652 . . . . . 6  |-  ( ( a  e.  X  /\  b  e.  X )  -> 
<. a ,  b >.  e.  ( X  X.  X
) )
22 fvco3 5579 . . . . . 6  |-  ( ( D : ( X  X.  X ) --> RR* 
/\  <. a ,  b
>.  e.  ( X  X.  X ) )  -> 
( ( F  o.  D ) `  <. a ,  b >. )  =  ( F `  ( D `  <. a ,  b >. )
) )
238, 21, 22syl2an 289 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( F  o.  D ) `  <. a ,  b >. )  =  ( F `  ( D `  <. a ,  b >. )
) )
24 df-ov 5868 . . . . 5  |-  ( a ( F  o.  D
) b )  =  ( ( F  o.  D ) `  <. a ,  b >. )
25 df-ov 5868 . . . . . 6  |-  ( a D b )  =  ( D `  <. a ,  b >. )
2625fveq2i 5510 . . . . 5  |-  ( F `
 ( a D b ) )  =  ( F `  ( D `  <. a ,  b >. ) )
2723, 24, 263eqtr4g 2233 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( a ( F  o.  D ) b )  =  ( F `
 ( a D b ) ) )
2827eqeq1d 2184 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( a ( F  o.  D ) b )  =  0  <-> 
( F `  (
a D b ) )  =  0 ) )
29 fveq2 5507 . . . . . 6  |-  ( x  =  ( a D b )  ->  ( F `  x )  =  ( F `  ( a D b ) ) )
3029eqeq1d 2184 . . . . 5  |-  ( x  =  ( a D b )  ->  (
( F `  x
)  =  0  <->  ( F `  ( a D b ) )  =  0 ) )
31 eqeq1 2182 . . . . 5  |-  ( x  =  ( a D b )  ->  (
x  =  0  <->  (
a D b )  =  0 ) )
3230, 31bibi12d 235 . . . 4  |-  ( x  =  ( a D b )  ->  (
( ( F `  x )  =  0  <-> 
x  =  0 )  <-> 
( ( F `  ( a D b ) )  =  0  <-> 
( a D b )  =  0 ) ) )
33 comet.3 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 [,] +oo ) )  ->  (
( F `  x
)  =  0  <->  x  =  0 ) )
3433ralrimiva 2548 . . . . 5  |-  ( ph  ->  A. x  e.  ( 0 [,] +oo )
( ( F `  x )  =  0  <-> 
x  =  0 ) )
3534adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  ->  A. x  e.  (
0 [,] +oo )
( ( F `  x )  =  0  <-> 
x  =  0 ) )
3632, 35, 15rspcdva 2844 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( F `  ( a D b ) )  =  0  <-> 
( a D b )  =  0 ) )
37 xmeteq0 13439 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  a  e.  X  /\  b  e.  X
)  ->  ( (
a D b )  =  0  <->  a  =  b ) )
38373expb 1204 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( a D b )  =  0  <-> 
a  =  b ) )
392, 38sylan 283 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( a D b )  =  0  <-> 
a  =  b ) )
4028, 36, 393bitrd 214 . 2  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( a ( F  o.  D ) b )  =  0  <-> 
a  =  b ) )
416adantr 276 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  F : ( 0 [,] +oo ) --> RR* )
42153adantr3 1158 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( a D b )  e.  ( 0 [,] +oo ) )
4341, 42ffvelcdmd 5644 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
a D b ) )  e.  RR* )
4418adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  D : ( X  X.  X ) --> ( 0 [,] +oo ) )
45 simpr3 1005 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
c  e.  X )
46 simpr1 1003 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
a  e.  X )
4744, 45, 46fovcdmd 6009 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( c D a )  e.  ( 0 [,] +oo ) )
48 simpr2 1004 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
b  e.  X )
4944, 45, 48fovcdmd 6009 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( c D b )  e.  ( 0 [,] +oo ) )
50 ge0xaddcl 9954 . . . . . 6  |-  ( ( ( c D a )  e.  ( 0 [,] +oo )  /\  ( c D b )  e.  ( 0 [,] +oo ) )  ->  ( ( c D a ) +e ( c D b ) )  e.  ( 0 [,] +oo ) )
5147, 49, 50syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( ( c D a ) +e
( c D b ) )  e.  ( 0 [,] +oo )
)
5241, 51ffvelcdmd 5644 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
( c D a ) +e ( c D b ) ) )  e.  RR* )
5341, 47ffvelcdmd 5644 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
c D a ) )  e.  RR* )
5441, 49ffvelcdmd 5644 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
c D b ) )  e.  RR* )
5553, 54xaddcld 9855 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( ( F `  ( c D a ) ) +e
( F `  (
c D b ) ) )  e.  RR* )
56 3anrot 983 . . . . . . 7  |-  ( ( c  e.  X  /\  a  e.  X  /\  b  e.  X )  <->  ( a  e.  X  /\  b  e.  X  /\  c  e.  X )
)
57 xmettri2 13441 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  ( c  e.  X  /\  a  e.  X  /\  b  e.  X ) )  -> 
( a D b )  <_  ( (
c D a ) +e ( c D b ) ) )
5856, 57sylan2br 288 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( a D b )  <_  ( (
c D a ) +e ( c D b ) ) )
592, 58sylan 283 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( a D b )  <_  ( (
c D a ) +e ( c D b ) ) )
60 comet.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo )
) )  ->  (
x  <_  y  ->  ( F `  x )  <_  ( F `  y ) ) )
6160ralrimivva 2557 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( 0 [,] +oo ) A. y  e.  (
0 [,] +oo )
( x  <_  y  ->  ( F `  x
)  <_  ( F `  y ) ) )
6261adantr 276 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  A. x  e.  (
0 [,] +oo ) A. y  e.  (
0 [,] +oo )
( x  <_  y  ->  ( F `  x
)  <_  ( F `  y ) ) )
63 breq1 4001 . . . . . . . 8  |-  ( x  =  ( a D b )  ->  (
x  <_  y  <->  ( a D b )  <_ 
y ) )
6429breq1d 4008 . . . . . . . 8  |-  ( x  =  ( a D b )  ->  (
( F `  x
)  <_  ( F `  y )  <->  ( F `  ( a D b ) )  <_  ( F `  y )
) )
6563, 64imbi12d 234 . . . . . . 7  |-  ( x  =  ( a D b )  ->  (
( x  <_  y  ->  ( F `  x
)  <_  ( F `  y ) )  <->  ( (
a D b )  <_  y  ->  ( F `  ( a D b ) )  <_  ( F `  y ) ) ) )
66 breq2 4002 . . . . . . . 8  |-  ( y  =  ( ( c D a ) +e ( c D b ) )  -> 
( ( a D b )  <_  y  <->  ( a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) )
67 fveq2 5507 . . . . . . . . 9  |-  ( y  =  ( ( c D a ) +e ( c D b ) )  -> 
( F `  y
)  =  ( F `
 ( ( c D a ) +e ( c D b ) ) ) )
6867breq2d 4010 . . . . . . . 8  |-  ( y  =  ( ( c D a ) +e ( c D b ) )  -> 
( ( F `  ( a D b ) )  <_  ( F `  y )  <->  ( F `  ( a D b ) )  <_  ( F `  ( ( c D a ) +e
( c D b ) ) ) ) )
6966, 68imbi12d 234 . . . . . . 7  |-  ( y  =  ( ( c D a ) +e ( c D b ) )  -> 
( ( ( a D b )  <_ 
y  ->  ( F `  ( a D b ) )  <_  ( F `  y )
)  <->  ( ( a D b )  <_ 
( ( c D a ) +e
( c D b ) )  ->  ( F `  ( a D b ) )  <_  ( F `  ( ( c D a ) +e
( c D b ) ) ) ) ) )
7065, 69rspc2va 2853 . . . . . 6  |-  ( ( ( ( a D b )  e.  ( 0 [,] +oo )  /\  ( ( c D a ) +e
( c D b ) )  e.  ( 0 [,] +oo )
)  /\  A. x  e.  ( 0 [,] +oo ) A. y  e.  ( 0 [,] +oo )
( x  <_  y  ->  ( F `  x
)  <_  ( F `  y ) ) )  ->  ( ( a D b )  <_ 
( ( c D a ) +e
( c D b ) )  ->  ( F `  ( a D b ) )  <_  ( F `  ( ( c D a ) +e
( c D b ) ) ) ) )
7142, 51, 62, 70syl21anc 1237 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( ( a D b )  <_  (
( c D a ) +e ( c D b ) )  ->  ( F `  ( a D b ) )  <_  ( F `  ( (
c D a ) +e ( c D b ) ) ) ) )
7259, 71mpd 13 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
a D b ) )  <_  ( F `  ( ( c D a ) +e
( c D b ) ) ) )
73 comet.5 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo )
) )  ->  ( F `  ( x +e y ) )  <_  ( ( F `  x ) +e ( F `
 y ) ) )
7473ralrimivva 2557 . . . . . 6  |-  ( ph  ->  A. x  e.  ( 0 [,] +oo ) A. y  e.  (
0 [,] +oo )
( F `  (
x +e y ) )  <_  (
( F `  x
) +e ( F `  y ) ) )
7574adantr 276 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  A. x  e.  (
0 [,] +oo ) A. y  e.  (
0 [,] +oo )
( F `  (
x +e y ) )  <_  (
( F `  x
) +e ( F `  y ) ) )
76 fvoveq1 5888 . . . . . . 7  |-  ( x  =  ( c D a )  ->  ( F `  ( x +e y ) )  =  ( F `
 ( ( c D a ) +e y ) ) )
77 fveq2 5507 . . . . . . . 8  |-  ( x  =  ( c D a )  ->  ( F `  x )  =  ( F `  ( c D a ) ) )
7877oveq1d 5880 . . . . . . 7  |-  ( x  =  ( c D a )  ->  (
( F `  x
) +e ( F `  y ) )  =  ( ( F `  ( c D a ) ) +e ( F `
 y ) ) )
7976, 78breq12d 4011 . . . . . 6  |-  ( x  =  ( c D a )  ->  (
( F `  (
x +e y ) )  <_  (
( F `  x
) +e ( F `  y ) )  <->  ( F `  ( ( c D a ) +e
y ) )  <_ 
( ( F `  ( c D a ) ) +e
( F `  y
) ) ) )
80 oveq2 5873 . . . . . . . 8  |-  ( y  =  ( c D b )  ->  (
( c D a ) +e y )  =  ( ( c D a ) +e ( c D b ) ) )
8180fveq2d 5511 . . . . . . 7  |-  ( y  =  ( c D b )  ->  ( F `  ( (
c D a ) +e y ) )  =  ( F `
 ( ( c D a ) +e ( c D b ) ) ) )
82 fveq2 5507 . . . . . . . 8  |-  ( y  =  ( c D b )  ->  ( F `  y )  =  ( F `  ( c D b ) ) )
8382oveq2d 5881 . . . . . . 7  |-  ( y  =  ( c D b )  ->  (
( F `  (
c D a ) ) +e ( F `  y ) )  =  ( ( F `  ( c D a ) ) +e ( F `
 ( c D b ) ) ) )
8481, 83breq12d 4011 . . . . . 6  |-  ( y  =  ( c D b )  ->  (
( F `  (
( c D a ) +e y ) )  <_  (
( F `  (
c D a ) ) +e ( F `  y ) )  <->  ( F `  ( ( c D a ) +e
( c D b ) ) )  <_ 
( ( F `  ( c D a ) ) +e
( F `  (
c D b ) ) ) ) )
8579, 84rspc2va 2853 . . . . 5  |-  ( ( ( ( c D a )  e.  ( 0 [,] +oo )  /\  ( c D b )  e.  ( 0 [,] +oo ) )  /\  A. x  e.  ( 0 [,] +oo ) A. y  e.  ( 0 [,] +oo )
( F `  (
x +e y ) )  <_  (
( F `  x
) +e ( F `  y ) ) )  ->  ( F `  ( (
c D a ) +e ( c D b ) ) )  <_  ( ( F `  ( c D a ) ) +e ( F `
 ( c D b ) ) ) )
8647, 49, 75, 85syl21anc 1237 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
( c D a ) +e ( c D b ) ) )  <_  (
( F `  (
c D a ) ) +e ( F `  ( c D b ) ) ) )
8743, 52, 55, 72, 86xrletrd 9783 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
a D b ) )  <_  ( ( F `  ( c D a ) ) +e ( F `
 ( c D b ) ) ) )
88273adantr3 1158 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( a ( F  o.  D ) b )  =  ( F `
 ( a D b ) ) )
898adantr 276 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  D : ( X  X.  X ) --> RR* )
9045, 46opelxpd 4653 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  <. c ,  a >.  e.  ( X  X.  X
) )
91 fvco3 5579 . . . . . 6  |-  ( ( D : ( X  X.  X ) --> RR* 
/\  <. c ,  a
>.  e.  ( X  X.  X ) )  -> 
( ( F  o.  D ) `  <. c ,  a >. )  =  ( F `  ( D `  <. c ,  a >. )
) )
9289, 90, 91syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( ( F  o.  D ) `  <. c ,  a >. )  =  ( F `  ( D `  <. c ,  a >. )
) )
93 df-ov 5868 . . . . 5  |-  ( c ( F  o.  D
) a )  =  ( ( F  o.  D ) `  <. c ,  a >. )
94 df-ov 5868 . . . . . 6  |-  ( c D a )  =  ( D `  <. c ,  a >. )
9594fveq2i 5510 . . . . 5  |-  ( F `
 ( c D a ) )  =  ( F `  ( D `  <. c ,  a >. ) )
9692, 93, 953eqtr4g 2233 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( c ( F  o.  D ) a )  =  ( F `
 ( c D a ) ) )
9745, 48opelxpd 4653 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  ->  <. c ,  b >.  e.  ( X  X.  X
) )
98 fvco3 5579 . . . . . 6  |-  ( ( D : ( X  X.  X ) --> RR* 
/\  <. c ,  b
>.  e.  ( X  X.  X ) )  -> 
( ( F  o.  D ) `  <. c ,  b >. )  =  ( F `  ( D `  <. c ,  b >. )
) )
9989, 97, 98syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( ( F  o.  D ) `  <. c ,  b >. )  =  ( F `  ( D `  <. c ,  b >. )
) )
100 df-ov 5868 . . . . 5  |-  ( c ( F  o.  D
) b )  =  ( ( F  o.  D ) `  <. c ,  b >. )
101 df-ov 5868 . . . . . 6  |-  ( c D b )  =  ( D `  <. c ,  b >. )
102101fveq2i 5510 . . . . 5  |-  ( F `
 ( c D b ) )  =  ( F `  ( D `  <. c ,  b >. ) )
10399, 100, 1023eqtr4g 2233 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( c ( F  o.  D ) b )  =  ( F `
 ( c D b ) ) )
10496, 103oveq12d 5883 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( ( c ( F  o.  D ) a ) +e
( c ( F  o.  D ) b ) )  =  ( ( F `  (
c D a ) ) +e ( F `  ( c D b ) ) ) )
10587, 88, 1043brtr4d 4030 . 2  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X ) )  -> 
( a ( F  o.  D ) b )  <_  ( (
c ( F  o.  D ) a ) +e ( c ( F  o.  D
) b ) ) )
1065, 20, 40, 105isxmetd 13427 1  |-  ( ph  ->  ( F  o.  D
)  e.  ( *Met `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453   <.cop 3592   class class class wbr 3998    X. cxp 4618   dom cdm 4620    o. ccom 4624   Rel wrel 4625    Fn wfn 5203   -->wf 5204   ` cfv 5208  (class class class)co 5865   0cc0 7786   +oocpnf 7963   RR*cxr 7965    <_ cle 7967   +ecxad 9741   [,]cicc 9862   *Metcxmet 13060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-2 8951  df-xadd 9744  df-icc 9866  df-xmet 13068
This theorem is referenced by:  bdxmet  13581
  Copyright terms: Public domain W3C validator