| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > comet | Unicode version | ||
| Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| comet.1 |
|
| comet.2 |
|
| comet.3 |
|
| comet.4 |
|
| comet.5 |
|
| Ref | Expression |
|---|---|
| comet |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetrel 14733 |
. . . 4
| |
| 2 | comet.1 |
. . . 4
| |
| 3 | relelfvdm 5602 |
. . . 4
| |
| 4 | 1, 2, 3 | sylancr 414 |
. . 3
|
| 5 | 4 | elexd 2784 |
. 2
|
| 6 | comet.2 |
. . 3
| |
| 7 | xmetf 14740 |
. . . . . 6
| |
| 8 | 2, 7 | syl 14 |
. . . . 5
|
| 9 | 8 | ffnd 5420 |
. . . 4
|
| 10 | xmetcl 14742 |
. . . . . . . 8
| |
| 11 | xmetge0 14755 |
. . . . . . . 8
| |
| 12 | elxrge0 10082 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | sylanbrc 417 |
. . . . . . 7
|
| 14 | 13 | 3expb 1206 |
. . . . . 6
|
| 15 | 2, 14 | sylan 283 |
. . . . 5
|
| 16 | 15 | ralrimivva 2587 |
. . . 4
|
| 17 | ffnov 6039 |
. . . 4
| |
| 18 | 9, 16, 17 | sylanbrc 417 |
. . 3
|
| 19 | fco 5435 |
. . 3
| |
| 20 | 6, 18, 19 | syl2anc 411 |
. 2
|
| 21 | opelxpi 4705 |
. . . . . 6
| |
| 22 | fvco3 5644 |
. . . . . 6
| |
| 23 | 8, 21, 22 | syl2an 289 |
. . . . 5
|
| 24 | df-ov 5937 |
. . . . 5
| |
| 25 | df-ov 5937 |
. . . . . 6
| |
| 26 | 25 | fveq2i 5573 |
. . . . 5
|
| 27 | 23, 24, 26 | 3eqtr4g 2262 |
. . . 4
|
| 28 | 27 | eqeq1d 2213 |
. . 3
|
| 29 | fveq2 5570 |
. . . . . 6
| |
| 30 | 29 | eqeq1d 2213 |
. . . . 5
|
| 31 | eqeq1 2211 |
. . . . 5
| |
| 32 | 30, 31 | bibi12d 235 |
. . . 4
|
| 33 | comet.3 |
. . . . . 6
| |
| 34 | 33 | ralrimiva 2578 |
. . . . 5
|
| 35 | 34 | adantr 276 |
. . . 4
|
| 36 | 32, 35, 15 | rspcdva 2881 |
. . 3
|
| 37 | xmeteq0 14749 |
. . . . 5
| |
| 38 | 37 | 3expb 1206 |
. . . 4
|
| 39 | 2, 38 | sylan 283 |
. . 3
|
| 40 | 28, 36, 39 | 3bitrd 214 |
. 2
|
| 41 | 6 | adantr 276 |
. . . . 5
|
| 42 | 15 | 3adantr3 1160 |
. . . . 5
|
| 43 | 41, 42 | ffvelcdmd 5710 |
. . . 4
|
| 44 | 18 | adantr 276 |
. . . . . . 7
|
| 45 | simpr3 1007 |
. . . . . . 7
| |
| 46 | simpr1 1005 |
. . . . . . 7
| |
| 47 | 44, 45, 46 | fovcdmd 6081 |
. . . . . 6
|
| 48 | simpr2 1006 |
. . . . . . 7
| |
| 49 | 44, 45, 48 | fovcdmd 6081 |
. . . . . 6
|
| 50 | ge0xaddcl 10087 |
. . . . . 6
| |
| 51 | 47, 49, 50 | syl2anc 411 |
. . . . 5
|
| 52 | 41, 51 | ffvelcdmd 5710 |
. . . 4
|
| 53 | 41, 47 | ffvelcdmd 5710 |
. . . . 5
|
| 54 | 41, 49 | ffvelcdmd 5710 |
. . . . 5
|
| 55 | 53, 54 | xaddcld 9988 |
. . . 4
|
| 56 | 3anrot 985 |
. . . . . . 7
| |
| 57 | xmettri2 14751 |
. . . . . . 7
| |
| 58 | 56, 57 | sylan2br 288 |
. . . . . 6
|
| 59 | 2, 58 | sylan 283 |
. . . . 5
|
| 60 | comet.4 |
. . . . . . . 8
| |
| 61 | 60 | ralrimivva 2587 |
. . . . . . 7
|
| 62 | 61 | adantr 276 |
. . . . . 6
|
| 63 | breq1 4046 |
. . . . . . . 8
| |
| 64 | 29 | breq1d 4053 |
. . . . . . . 8
|
| 65 | 63, 64 | imbi12d 234 |
. . . . . . 7
|
| 66 | breq2 4047 |
. . . . . . . 8
| |
| 67 | fveq2 5570 |
. . . . . . . . 9
| |
| 68 | 67 | breq2d 4055 |
. . . . . . . 8
|
| 69 | 66, 68 | imbi12d 234 |
. . . . . . 7
|
| 70 | 65, 69 | rspc2va 2890 |
. . . . . 6
|
| 71 | 42, 51, 62, 70 | syl21anc 1248 |
. . . . 5
|
| 72 | 59, 71 | mpd 13 |
. . . 4
|
| 73 | comet.5 |
. . . . . . 7
| |
| 74 | 73 | ralrimivva 2587 |
. . . . . 6
|
| 75 | 74 | adantr 276 |
. . . . 5
|
| 76 | fvoveq1 5957 |
. . . . . . 7
| |
| 77 | fveq2 5570 |
. . . . . . . 8
| |
| 78 | 77 | oveq1d 5949 |
. . . . . . 7
|
| 79 | 76, 78 | breq12d 4056 |
. . . . . 6
|
| 80 | oveq2 5942 |
. . . . . . . 8
| |
| 81 | 80 | fveq2d 5574 |
. . . . . . 7
|
| 82 | fveq2 5570 |
. . . . . . . 8
| |
| 83 | 82 | oveq2d 5950 |
. . . . . . 7
|
| 84 | 81, 83 | breq12d 4056 |
. . . . . 6
|
| 85 | 79, 84 | rspc2va 2890 |
. . . . 5
|
| 86 | 47, 49, 75, 85 | syl21anc 1248 |
. . . 4
|
| 87 | 43, 52, 55, 72, 86 | xrletrd 9916 |
. . 3
|
| 88 | 27 | 3adantr3 1160 |
. . 3
|
| 89 | 8 | adantr 276 |
. . . . . 6
|
| 90 | 45, 46 | opelxpd 4706 |
. . . . . 6
|
| 91 | fvco3 5644 |
. . . . . 6
| |
| 92 | 89, 90, 91 | syl2anc 411 |
. . . . 5
|
| 93 | df-ov 5937 |
. . . . 5
| |
| 94 | df-ov 5937 |
. . . . . 6
| |
| 95 | 94 | fveq2i 5573 |
. . . . 5
|
| 96 | 92, 93, 95 | 3eqtr4g 2262 |
. . . 4
|
| 97 | 45, 48 | opelxpd 4706 |
. . . . . 6
|
| 98 | fvco3 5644 |
. . . . . 6
| |
| 99 | 89, 97, 98 | syl2anc 411 |
. . . . 5
|
| 100 | df-ov 5937 |
. . . . 5
| |
| 101 | df-ov 5937 |
. . . . . 6
| |
| 102 | 101 | fveq2i 5573 |
. . . . 5
|
| 103 | 99, 100, 102 | 3eqtr4g 2262 |
. . . 4
|
| 104 | 96, 103 | oveq12d 5952 |
. . 3
|
| 105 | 87, 88, 104 | 3brtr4d 4075 |
. 2
|
| 106 | 5, 20, 40, 105 | isxmetd 14737 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-map 6727 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-2 9077 df-xadd 9877 df-icc 9999 df-xmet 14224 |
| This theorem is referenced by: bdxmet 14891 |
| Copyright terms: Public domain | W3C validator |