Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > comet | Unicode version |
Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
comet.1 | |
comet.2 | |
comet.3 | |
comet.4 | |
comet.5 |
Ref | Expression |
---|---|
comet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetrel 13137 | . . . 4 | |
2 | comet.1 | . . . 4 | |
3 | relelfvdm 5528 | . . . 4 | |
4 | 1, 2, 3 | sylancr 412 | . . 3 |
5 | 4 | elexd 2743 | . 2 |
6 | comet.2 | . . 3 | |
7 | xmetf 13144 | . . . . . 6 | |
8 | 2, 7 | syl 14 | . . . . 5 |
9 | 8 | ffnd 5348 | . . . 4 |
10 | xmetcl 13146 | . . . . . . . 8 | |
11 | xmetge0 13159 | . . . . . . . 8 | |
12 | elxrge0 9935 | . . . . . . . 8 | |
13 | 10, 11, 12 | sylanbrc 415 | . . . . . . 7 |
14 | 13 | 3expb 1199 | . . . . . 6 |
15 | 2, 14 | sylan 281 | . . . . 5 |
16 | 15 | ralrimivva 2552 | . . . 4 |
17 | ffnov 5957 | . . . 4 | |
18 | 9, 16, 17 | sylanbrc 415 | . . 3 |
19 | fco 5363 | . . 3 | |
20 | 6, 18, 19 | syl2anc 409 | . 2 |
21 | opelxpi 4643 | . . . . . 6 | |
22 | fvco3 5567 | . . . . . 6 | |
23 | 8, 21, 22 | syl2an 287 | . . . . 5 |
24 | df-ov 5856 | . . . . 5 | |
25 | df-ov 5856 | . . . . . 6 | |
26 | 25 | fveq2i 5499 | . . . . 5 |
27 | 23, 24, 26 | 3eqtr4g 2228 | . . . 4 |
28 | 27 | eqeq1d 2179 | . . 3 |
29 | fveq2 5496 | . . . . . 6 | |
30 | 29 | eqeq1d 2179 | . . . . 5 |
31 | eqeq1 2177 | . . . . 5 | |
32 | 30, 31 | bibi12d 234 | . . . 4 |
33 | comet.3 | . . . . . 6 | |
34 | 33 | ralrimiva 2543 | . . . . 5 |
35 | 34 | adantr 274 | . . . 4 |
36 | 32, 35, 15 | rspcdva 2839 | . . 3 |
37 | xmeteq0 13153 | . . . . 5 | |
38 | 37 | 3expb 1199 | . . . 4 |
39 | 2, 38 | sylan 281 | . . 3 |
40 | 28, 36, 39 | 3bitrd 213 | . 2 |
41 | 6 | adantr 274 | . . . . 5 |
42 | 15 | 3adantr3 1153 | . . . . 5 |
43 | 41, 42 | ffvelrnd 5632 | . . . 4 |
44 | 18 | adantr 274 | . . . . . . 7 |
45 | simpr3 1000 | . . . . . . 7 | |
46 | simpr1 998 | . . . . . . 7 | |
47 | 44, 45, 46 | fovrnd 5997 | . . . . . 6 |
48 | simpr2 999 | . . . . . . 7 | |
49 | 44, 45, 48 | fovrnd 5997 | . . . . . 6 |
50 | ge0xaddcl 9940 | . . . . . 6 | |
51 | 47, 49, 50 | syl2anc 409 | . . . . 5 |
52 | 41, 51 | ffvelrnd 5632 | . . . 4 |
53 | 41, 47 | ffvelrnd 5632 | . . . . 5 |
54 | 41, 49 | ffvelrnd 5632 | . . . . 5 |
55 | 53, 54 | xaddcld 9841 | . . . 4 |
56 | 3anrot 978 | . . . . . . 7 | |
57 | xmettri2 13155 | . . . . . . 7 | |
58 | 56, 57 | sylan2br 286 | . . . . . 6 |
59 | 2, 58 | sylan 281 | . . . . 5 |
60 | comet.4 | . . . . . . . 8 | |
61 | 60 | ralrimivva 2552 | . . . . . . 7 |
62 | 61 | adantr 274 | . . . . . 6 |
63 | breq1 3992 | . . . . . . . 8 | |
64 | 29 | breq1d 3999 | . . . . . . . 8 |
65 | 63, 64 | imbi12d 233 | . . . . . . 7 |
66 | breq2 3993 | . . . . . . . 8 | |
67 | fveq2 5496 | . . . . . . . . 9 | |
68 | 67 | breq2d 4001 | . . . . . . . 8 |
69 | 66, 68 | imbi12d 233 | . . . . . . 7 |
70 | 65, 69 | rspc2va 2848 | . . . . . 6 |
71 | 42, 51, 62, 70 | syl21anc 1232 | . . . . 5 |
72 | 59, 71 | mpd 13 | . . . 4 |
73 | comet.5 | . . . . . . 7 | |
74 | 73 | ralrimivva 2552 | . . . . . 6 |
75 | 74 | adantr 274 | . . . . 5 |
76 | fvoveq1 5876 | . . . . . . 7 | |
77 | fveq2 5496 | . . . . . . . 8 | |
78 | 77 | oveq1d 5868 | . . . . . . 7 |
79 | 76, 78 | breq12d 4002 | . . . . . 6 |
80 | oveq2 5861 | . . . . . . . 8 | |
81 | 80 | fveq2d 5500 | . . . . . . 7 |
82 | fveq2 5496 | . . . . . . . 8 | |
83 | 82 | oveq2d 5869 | . . . . . . 7 |
84 | 81, 83 | breq12d 4002 | . . . . . 6 |
85 | 79, 84 | rspc2va 2848 | . . . . 5 |
86 | 47, 49, 75, 85 | syl21anc 1232 | . . . 4 |
87 | 43, 52, 55, 72, 86 | xrletrd 9769 | . . 3 |
88 | 27 | 3adantr3 1153 | . . 3 |
89 | 8 | adantr 274 | . . . . . 6 |
90 | 45, 46 | opelxpd 4644 | . . . . . 6 |
91 | fvco3 5567 | . . . . . 6 | |
92 | 89, 90, 91 | syl2anc 409 | . . . . 5 |
93 | df-ov 5856 | . . . . 5 | |
94 | df-ov 5856 | . . . . . 6 | |
95 | 94 | fveq2i 5499 | . . . . 5 |
96 | 92, 93, 95 | 3eqtr4g 2228 | . . . 4 |
97 | 45, 48 | opelxpd 4644 | . . . . . 6 |
98 | fvco3 5567 | . . . . . 6 | |
99 | 89, 97, 98 | syl2anc 409 | . . . . 5 |
100 | df-ov 5856 | . . . . 5 | |
101 | df-ov 5856 | . . . . . 6 | |
102 | 101 | fveq2i 5499 | . . . . 5 |
103 | 99, 100, 102 | 3eqtr4g 2228 | . . . 4 |
104 | 96, 103 | oveq12d 5871 | . . 3 |
105 | 87, 88, 104 | 3brtr4d 4021 | . 2 |
106 | 5, 20, 40, 105 | isxmetd 13141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 cop 3586 class class class wbr 3989 cxp 4609 cdm 4611 ccom 4615 wrel 4616 wfn 5193 wf 5194 cfv 5198 (class class class)co 5853 cc0 7774 cpnf 7951 cxr 7953 cle 7955 cxad 9727 cicc 9848 cxmet 12774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-2 8937 df-xadd 9730 df-icc 9852 df-xmet 12782 |
This theorem is referenced by: bdxmet 13295 |
Copyright terms: Public domain | W3C validator |