ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anim123d Unicode version

Theorem 3anim123d 1332
Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
3anim123d.1  |-  ( ph  ->  ( ps  ->  ch ) )
3anim123d.2  |-  ( ph  ->  ( th  ->  ta ) )
3anim123d.3  |-  ( ph  ->  ( et  ->  ze )
)
Assertion
Ref Expression
3anim123d  |-  ( ph  ->  ( ( ps  /\  th 
/\  et )  -> 
( ch  /\  ta  /\ 
ze ) ) )

Proof of Theorem 3anim123d
StepHypRef Expression
1 3anim123d.1 . . . 4  |-  ( ph  ->  ( ps  ->  ch ) )
2 3anim123d.2 . . . 4  |-  ( ph  ->  ( th  ->  ta ) )
31, 2anim12d 335 . . 3  |-  ( ph  ->  ( ( ps  /\  th )  ->  ( ch  /\ 
ta ) ) )
4 3anim123d.3 . . 3  |-  ( ph  ->  ( et  ->  ze )
)
53, 4anim12d 335 . 2  |-  ( ph  ->  ( ( ( ps 
/\  th )  /\  et )  ->  ( ( ch 
/\  ta )  /\  ze ) ) )
6 df-3an 983 . 2  |-  ( ( ps  /\  th  /\  et )  <->  ( ( ps 
/\  th )  /\  et ) )
7 df-3an 983 . 2  |-  ( ( ch  /\  ta  /\  ze )  <->  ( ( ch 
/\  ta )  /\  ze ) )
85, 6, 73imtr4g 205 1  |-  ( ph  ->  ( ( ps  /\  th 
/\  et )  -> 
( ch  /\  ta  /\ 
ze ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  hb3and  1514  pofun  4377  soss  4379  wessep  4644  isopolem  5914  isosolem  5916  issmo2  6398  smores  6401  issubmnd  13389  issubg2m  13640  issubrng2  14087  issubrg2  14118  rnglidlmsgrp  14374  rnglidlrng  14375  sslm  14834
  Copyright terms: Public domain W3C validator