ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sslm Unicode version

Theorem sslm 14915
Description: A finer topology has fewer convergent sequences (but the sequences that do converge, converge to the same value). (Contributed by Mario Carneiro, 15-Sep-2015.)
Assertion
Ref Expression
sslm  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( ~~> t `  K )  C_  ( ~~> t `  J )
)

Proof of Theorem sslm
Dummy variables  u  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idd 21 . . . . 5  |-  ( J 
C_  K  ->  (
f  e.  ( X 
^pm  CC )  ->  f  e.  ( X  ^pm  CC ) ) )
2 idd 21 . . . . 5  |-  ( J 
C_  K  ->  (
x  e.  X  ->  x  e.  X )
)
3 ssralv 3288 . . . . 5  |-  ( J 
C_  K  ->  ( A. u  e.  K  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  ->  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) )
41, 2, 33anim123d 1353 . . . 4  |-  ( J 
C_  K  ->  (
( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  K  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) )  ->  (
f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) ) )
54ssopab2dv 4366 . . 3  |-  ( J 
C_  K  ->  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  K  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } 
C_  { <. f ,  x >.  |  (
f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } )
653ad2ant3 1044 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  { <. f ,  x >.  |  (
f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  K  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } 
C_  { <. f ,  x >.  |  (
f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } )
7 lmfval 14860 . . 3  |-  ( K  e.  (TopOn `  X
)  ->  ( ~~> t `  K )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  K  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
873ad2ant2 1043 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( ~~> t `  K )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  K  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
9 lmfval 14860 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
1093ad2ant1 1042 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
116, 8, 103sstr4d 3269 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( ~~> t `  K )  C_  ( ~~> t `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   {copab 4143   ran crn 4719    |` cres 4720   -->wf 5313   ` cfv 5317  (class class class)co 6000    ^pm cpm 6794   CCcc 7993   ZZ>=cuz 9718  TopOnctopon 14678   ~~> tclm 14855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pm 6796  df-top 14666  df-topon 14679  df-lm 14858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator