Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sslm | Unicode version |
Description: A finer topology has fewer convergent sequences (but the sequences that do converge, converge to the same value). (Contributed by Mario Carneiro, 15-Sep-2015.) |
Ref | Expression |
---|---|
sslm | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . . . . 5 | |
2 | idd 21 | . . . . 5 | |
3 | ssralv 3211 | . . . . 5 | |
4 | 1, 2, 3 | 3anim123d 1314 | . . . 4 |
5 | 4 | ssopab2dv 4261 | . . 3 |
6 | 5 | 3ad2ant3 1015 | . 2 TopOn TopOn |
7 | lmfval 12951 | . . 3 TopOn | |
8 | 7 | 3ad2ant2 1014 | . 2 TopOn TopOn |
9 | lmfval 12951 | . . 3 TopOn | |
10 | 9 | 3ad2ant1 1013 | . 2 TopOn TopOn |
11 | 6, 8, 10 | 3sstr4d 3192 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 wss 3121 copab 4047 crn 4610 cres 4611 wf 5192 cfv 5196 (class class class)co 5851 cpm 6625 cc 7765 cuz 9480 TopOnctopon 12767 clm 12946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-cnex 7858 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-pm 6627 df-top 12755 df-topon 12768 df-lm 12949 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |