Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > issmo2 | Unicode version |
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
issmo2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fss 5359 | . . . . 5 | |
2 | 1 | ex 114 | . . . 4 |
3 | fdm 5353 | . . . . 5 | |
4 | 3 | feq2d 5335 | . . . 4 |
5 | 2, 4 | sylibrd 168 | . . 3 |
6 | ordeq 4357 | . . . . 5 | |
7 | 3, 6 | syl 14 | . . . 4 |
8 | 7 | biimprd 157 | . . 3 |
9 | 3 | raleqdv 2671 | . . . 4 |
10 | 9 | biimprd 157 | . . 3 |
11 | 5, 8, 10 | 3anim123d 1314 | . 2 |
12 | dfsmo2 6266 | . 2 | |
13 | 11, 12 | syl6ibr 161 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 wss 3121 word 4347 con0 4348 cdm 4611 wf 5194 cfv 5198 wsmo 6264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 df-tr 4088 df-iord 4351 df-fn 5201 df-f 5202 df-smo 6265 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |