ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issmo2 Unicode version

Theorem issmo2 6268
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
issmo2  |-  ( F : A --> B  -> 
( ( B  C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x
) )  ->  Smo  F ) )
Distinct variable groups:    x, A    x, F, y
Allowed substitution hints:    A( y)    B( x, y)

Proof of Theorem issmo2
StepHypRef Expression
1 fss 5359 . . . . 5  |-  ( ( F : A --> B  /\  B  C_  On )  ->  F : A --> On )
21ex 114 . . . 4  |-  ( F : A --> B  -> 
( B  C_  On  ->  F : A --> On ) )
3 fdm 5353 . . . . 5  |-  ( F : A --> B  ->  dom  F  =  A )
43feq2d 5335 . . . 4  |-  ( F : A --> B  -> 
( F : dom  F --> On  <->  F : A --> On ) )
52, 4sylibrd 168 . . 3  |-  ( F : A --> B  -> 
( B  C_  On  ->  F : dom  F --> On ) )
6 ordeq 4357 . . . . 5  |-  ( dom 
F  =  A  -> 
( Ord  dom  F  <->  Ord  A ) )
73, 6syl 14 . . . 4  |-  ( F : A --> B  -> 
( Ord  dom  F  <->  Ord  A ) )
87biimprd 157 . . 3  |-  ( F : A --> B  -> 
( Ord  A  ->  Ord 
dom  F ) )
93raleqdv 2671 . . . 4  |-  ( F : A --> B  -> 
( A. x  e. 
dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x )  <->  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
109biimprd 157 . . 3  |-  ( F : A --> B  -> 
( A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x )  ->  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
115, 8, 103anim123d 1314 . 2  |-  ( F : A --> B  -> 
( ( B  C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x
) )  ->  ( F : dom  F --> On  /\  Ord  dom  F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x
) ) ) )
12 dfsmo2 6266 . 2  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
1311, 12syl6ibr 161 1  |-  ( F : A --> B  -> 
( ( B  C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x
) )  ->  Smo  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448    C_ wss 3121   Ord word 4347   Oncon0 4348   dom cdm 4611   -->wf 5194   ` cfv 5198   Smo wsmo 6264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351  df-fn 5201  df-f 5202  df-smo 6265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator