ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issmo2 Unicode version

Theorem issmo2 6398
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
issmo2  |-  ( F : A --> B  -> 
( ( B  C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x
) )  ->  Smo  F ) )
Distinct variable groups:    x, A    x, F, y
Allowed substitution hints:    A( y)    B( x, y)

Proof of Theorem issmo2
StepHypRef Expression
1 fss 5457 . . . . 5  |-  ( ( F : A --> B  /\  B  C_  On )  ->  F : A --> On )
21ex 115 . . . 4  |-  ( F : A --> B  -> 
( B  C_  On  ->  F : A --> On ) )
3 fdm 5451 . . . . 5  |-  ( F : A --> B  ->  dom  F  =  A )
43feq2d 5433 . . . 4  |-  ( F : A --> B  -> 
( F : dom  F --> On  <->  F : A --> On ) )
52, 4sylibrd 169 . . 3  |-  ( F : A --> B  -> 
( B  C_  On  ->  F : dom  F --> On ) )
6 ordeq 4437 . . . . 5  |-  ( dom 
F  =  A  -> 
( Ord  dom  F  <->  Ord  A ) )
73, 6syl 14 . . . 4  |-  ( F : A --> B  -> 
( Ord  dom  F  <->  Ord  A ) )
87biimprd 158 . . 3  |-  ( F : A --> B  -> 
( Ord  A  ->  Ord 
dom  F ) )
93raleqdv 2711 . . . 4  |-  ( F : A --> B  -> 
( A. x  e. 
dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x )  <->  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
109biimprd 158 . . 3  |-  ( F : A --> B  -> 
( A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x )  ->  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
115, 8, 103anim123d 1332 . 2  |-  ( F : A --> B  -> 
( ( B  C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x
) )  ->  ( F : dom  F --> On  /\  Ord  dom  F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x
) ) ) )
12 dfsmo2 6396 . 2  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
1311, 12imbitrrdi 162 1  |-  ( F : A --> B  -> 
( ( B  C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x
) )  ->  Smo  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486    C_ wss 3174   Ord word 4427   Oncon0 4428   dom cdm 4693   -->wf 5286   ` cfv 5290   Smo wsmo 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-uni 3865  df-tr 4159  df-iord 4431  df-fn 5293  df-f 5294  df-smo 6395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator