ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issmo2 Unicode version

Theorem issmo2 6054
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
issmo2  |-  ( F : A --> B  -> 
( ( B  C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x
) )  ->  Smo  F ) )
Distinct variable groups:    x, A    x, F, y
Allowed substitution hints:    A( y)    B( x, y)

Proof of Theorem issmo2
StepHypRef Expression
1 fss 5172 . . . . 5  |-  ( ( F : A --> B  /\  B  C_  On )  ->  F : A --> On )
21ex 113 . . . 4  |-  ( F : A --> B  -> 
( B  C_  On  ->  F : A --> On ) )
3 fdm 5166 . . . . 5  |-  ( F : A --> B  ->  dom  F  =  A )
43feq2d 5150 . . . 4  |-  ( F : A --> B  -> 
( F : dom  F --> On  <->  F : A --> On ) )
52, 4sylibrd 167 . . 3  |-  ( F : A --> B  -> 
( B  C_  On  ->  F : dom  F --> On ) )
6 ordeq 4199 . . . . 5  |-  ( dom 
F  =  A  -> 
( Ord  dom  F  <->  Ord  A ) )
73, 6syl 14 . . . 4  |-  ( F : A --> B  -> 
( Ord  dom  F  <->  Ord  A ) )
87biimprd 156 . . 3  |-  ( F : A --> B  -> 
( Ord  A  ->  Ord 
dom  F ) )
93raleqdv 2568 . . . 4  |-  ( F : A --> B  -> 
( A. x  e. 
dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x )  <->  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
109biimprd 156 . . 3  |-  ( F : A --> B  -> 
( A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x )  ->  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
115, 8, 103anim123d 1255 . 2  |-  ( F : A --> B  -> 
( ( B  C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x
) )  ->  ( F : dom  F --> On  /\  Ord  dom  F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x
) ) ) )
12 dfsmo2 6052 . 2  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
1311, 12syl6ibr 160 1  |-  ( F : A --> B  -> 
( ( B  C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x
) )  ->  Smo  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359    C_ wss 2999   Ord word 4189   Oncon0 4190   dom cdm 4438   -->wf 5011   ` cfv 5015   Smo wsmo 6050
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-in 3005  df-ss 3012  df-uni 3654  df-tr 3937  df-iord 4193  df-fn 5018  df-f 5019  df-smo 6051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator