ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issmo2 Unicode version

Theorem issmo2 6435
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
issmo2  |-  ( F : A --> B  -> 
( ( B  C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x
) )  ->  Smo  F ) )
Distinct variable groups:    x, A    x, F, y
Allowed substitution hints:    A( y)    B( x, y)

Proof of Theorem issmo2
StepHypRef Expression
1 fss 5485 . . . . 5  |-  ( ( F : A --> B  /\  B  C_  On )  ->  F : A --> On )
21ex 115 . . . 4  |-  ( F : A --> B  -> 
( B  C_  On  ->  F : A --> On ) )
3 fdm 5479 . . . . 5  |-  ( F : A --> B  ->  dom  F  =  A )
43feq2d 5461 . . . 4  |-  ( F : A --> B  -> 
( F : dom  F --> On  <->  F : A --> On ) )
52, 4sylibrd 169 . . 3  |-  ( F : A --> B  -> 
( B  C_  On  ->  F : dom  F --> On ) )
6 ordeq 4463 . . . . 5  |-  ( dom 
F  =  A  -> 
( Ord  dom  F  <->  Ord  A ) )
73, 6syl 14 . . . 4  |-  ( F : A --> B  -> 
( Ord  dom  F  <->  Ord  A ) )
87biimprd 158 . . 3  |-  ( F : A --> B  -> 
( Ord  A  ->  Ord 
dom  F ) )
93raleqdv 2734 . . . 4  |-  ( F : A --> B  -> 
( A. x  e. 
dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x )  <->  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
109biimprd 158 . . 3  |-  ( F : A --> B  -> 
( A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x )  ->  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
115, 8, 103anim123d 1353 . 2  |-  ( F : A --> B  -> 
( ( B  C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x
) )  ->  ( F : dom  F --> On  /\  Ord  dom  F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x
) ) ) )
12 dfsmo2 6433 . 2  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
1311, 12imbitrrdi 162 1  |-  ( F : A --> B  -> 
( ( B  C_  On  /\  Ord  A  /\  A. x  e.  A  A. y  e.  x  ( F `  y )  e.  ( F `  x
) )  ->  Smo  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   Ord word 4453   Oncon0 4454   dom cdm 4719   -->wf 5314   ` cfv 5318   Smo wsmo 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3889  df-tr 4183  df-iord 4457  df-fn 5321  df-f 5322  df-smo 6432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator