Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > issmo2 | Unicode version |
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
issmo2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fss 5349 | . . . . 5 | |
2 | 1 | ex 114 | . . . 4 |
3 | fdm 5343 | . . . . 5 | |
4 | 3 | feq2d 5325 | . . . 4 |
5 | 2, 4 | sylibrd 168 | . . 3 |
6 | ordeq 4350 | . . . . 5 | |
7 | 3, 6 | syl 14 | . . . 4 |
8 | 7 | biimprd 157 | . . 3 |
9 | 3 | raleqdv 2667 | . . . 4 |
10 | 9 | biimprd 157 | . . 3 |
11 | 5, 8, 10 | 3anim123d 1309 | . 2 |
12 | dfsmo2 6255 | . 2 | |
13 | 11, 12 | syl6ibr 161 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 wss 3116 word 4340 con0 4341 cdm 4604 wf 5184 cfv 5188 wsmo 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 df-iord 4344 df-fn 5191 df-f 5192 df-smo 6254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |