ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubmnd Unicode version

Theorem issubmnd 13475
Description: Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
issubmnd.b  |-  B  =  ( Base `  G
)
issubmnd.p  |-  .+  =  ( +g  `  G )
issubmnd.z  |-  .0.  =  ( 0g `  G )
issubmnd.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
issubmnd  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  ( H  e.  Mnd  <->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) )
Distinct variable groups:    x, y, B   
x, G, y    x, H, y    x,  .+ , y    x, S, y    x,  .0. , y

Proof of Theorem issubmnd
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  H  e.  Mnd )
2 simprl 529 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  S )
3 issubmnd.h . . . . . . . . 9  |-  H  =  ( Gs  S )
43a1i 9 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  H  =  ( Gs  S ) )
5 issubmnd.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
65a1i 9 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  B  =  ( Base `  G
) )
7 simp1 1021 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  G  e.  Mnd )
8 simp2 1022 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  S  C_  B )
94, 6, 7, 8ressbas2d 13101 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  S  =  ( Base `  H
) )
109ad2antrr 488 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  S  =  ( Base `  H ) )
112, 10eleqtrd 2308 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  ( Base `  H ) )
12 simprr 531 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
y  e.  S )
1312, 10eleqtrd 2308 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
y  e.  ( Base `  H ) )
14 eqid 2229 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
15 eqid 2229 . . . . . 6  |-  ( +g  `  H )  =  ( +g  `  H )
1614, 15mndcl 13456 . . . . 5  |-  ( ( H  e.  Mnd  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H
) )  ->  (
x ( +g  `  H
) y )  e.  ( Base `  H
) )
171, 11, 13, 16syl3anc 1271 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( +g  `  H ) y )  e.  ( Base `  H
) )
18 issubmnd.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
1918a1i 9 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  .+  =  ( +g  `  G ) )
20 basfn 13091 . . . . . . . . . . 11  |-  Base  Fn  _V
21 elex 2811 . . . . . . . . . . 11  |-  ( G  e.  Mnd  ->  G  e.  _V )
22 funfvex 5644 . . . . . . . . . . . 12  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
2322funfni 5423 . . . . . . . . . . 11  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2420, 21, 23sylancr 414 . . . . . . . . . 10  |-  ( G  e.  Mnd  ->  ( Base `  G )  e. 
_V )
255, 24eqeltrid 2316 . . . . . . . . 9  |-  ( G  e.  Mnd  ->  B  e.  _V )
267, 25syl 14 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  B  e.  _V )
2726, 8ssexd 4224 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  S  e.  _V )
284, 19, 27, 7ressplusgd 13162 . . . . . 6  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  .+  =  ( +g  `  H ) )
2928ad2antrr 488 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  .+  =  ( +g  `  H ) )
3029oveqd 6018 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( x ( +g  `  H
) y ) )
3117, 30, 103eltr4d 2313 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3231ralrimivva 2612 . 2  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  ->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S )
339adantr 276 . . 3  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  S  =  ( Base `  H
) )
3428adantr 276 . . 3  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  .+  =  ( +g  `  H ) )
35 ovrspc2v 6027 . . . . . 6  |-  ( ( ( u  e.  S  /\  v  e.  S
)  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  ->  ( u  .+  v )  e.  S
)
3635ancoms 268 . . . . 5  |-  ( ( A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S  /\  (
u  e.  S  /\  v  e.  S )
)  ->  ( u  .+  v )  e.  S
)
37363impb 1223 . . . 4  |-  ( ( A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S  /\  u  e.  S  /\  v  e.  S )  ->  (
u  .+  v )  e.  S )
38373adant1l 1254 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  S  /\  v  e.  S
)  ->  ( u  .+  v )  e.  S
)
39 simpl1 1024 . . . 4  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  G  e.  Mnd )
40 simpl2 1025 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  S  C_  B )
4140sseld 3223 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  (
u  e.  S  ->  u  e.  B )
)
4240sseld 3223 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  (
v  e.  S  -> 
v  e.  B ) )
4340sseld 3223 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  (
w  e.  S  ->  w  e.  B )
)
4441, 42, 433anim123d 1353 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  (
( u  e.  S  /\  v  e.  S  /\  w  e.  S
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
4544imp 124 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  ( u  e.  S  /\  v  e.  S  /\  w  e.  S ) )  -> 
( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )
465, 18mndass 13457 . . . 4  |-  ( ( G  e.  Mnd  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u  .+  v
)  .+  w )  =  ( u  .+  ( v  .+  w
) ) )
4739, 45, 46syl2an2r 597 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  ( u  e.  S  /\  v  e.  S  /\  w  e.  S ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
48 simpl3 1026 . . 3  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  .0.  e.  S )
4940sselda 3224 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  S )  ->  u  e.  B )
50 issubmnd.z . . . . 5  |-  .0.  =  ( 0g `  G )
515, 18, 50mndlid 13468 . . . 4  |-  ( ( G  e.  Mnd  /\  u  e.  B )  ->  (  .0.  .+  u
)  =  u )
5239, 49, 51syl2an2r 597 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  S )  ->  (  .0.  .+  u )  =  u )
535, 18, 50mndrid 13469 . . . 4  |-  ( ( G  e.  Mnd  /\  u  e.  B )  ->  ( u  .+  .0.  )  =  u )
5439, 49, 53syl2an2r 597 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  S )  ->  (
u  .+  .0.  )  =  u )
5533, 34, 38, 47, 48, 52, 54ismndd 13470 . 2  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  H  e.  Mnd )
5632, 55impbida 598 1  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  ( H  e.  Mnd  <->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   +g cplusg 13110   0gc0g 13289   Mndcmnd 13449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450
This theorem is referenced by:  issubm2  13506
  Copyright terms: Public domain W3C validator