| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubmnd | Unicode version | ||
| Description: Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| issubmnd.b |
|
| issubmnd.p |
|
| issubmnd.z |
|
| issubmnd.h |
|
| Ref | Expression |
|---|---|
| issubmnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . . 5
| |
| 2 | simprl 529 |
. . . . . 6
| |
| 3 | issubmnd.h |
. . . . . . . . 9
| |
| 4 | 3 | a1i 9 |
. . . . . . . 8
|
| 5 | issubmnd.b |
. . . . . . . . 9
| |
| 6 | 5 | a1i 9 |
. . . . . . . 8
|
| 7 | simp1 1000 |
. . . . . . . 8
| |
| 8 | simp2 1001 |
. . . . . . . 8
| |
| 9 | 4, 6, 7, 8 | ressbas2d 12900 |
. . . . . . 7
|
| 10 | 9 | ad2antrr 488 |
. . . . . 6
|
| 11 | 2, 10 | eleqtrd 2284 |
. . . . 5
|
| 12 | simprr 531 |
. . . . . 6
| |
| 13 | 12, 10 | eleqtrd 2284 |
. . . . 5
|
| 14 | eqid 2205 |
. . . . . 6
| |
| 15 | eqid 2205 |
. . . . . 6
| |
| 16 | 14, 15 | mndcl 13255 |
. . . . 5
|
| 17 | 1, 11, 13, 16 | syl3anc 1250 |
. . . 4
|
| 18 | issubmnd.p |
. . . . . . . 8
| |
| 19 | 18 | a1i 9 |
. . . . . . 7
|
| 20 | basfn 12890 |
. . . . . . . . . . 11
| |
| 21 | elex 2783 |
. . . . . . . . . . 11
| |
| 22 | funfvex 5593 |
. . . . . . . . . . . 12
| |
| 23 | 22 | funfni 5376 |
. . . . . . . . . . 11
|
| 24 | 20, 21, 23 | sylancr 414 |
. . . . . . . . . 10
|
| 25 | 5, 24 | eqeltrid 2292 |
. . . . . . . . 9
|
| 26 | 7, 25 | syl 14 |
. . . . . . . 8
|
| 27 | 26, 8 | ssexd 4184 |
. . . . . . 7
|
| 28 | 4, 19, 27, 7 | ressplusgd 12961 |
. . . . . 6
|
| 29 | 28 | ad2antrr 488 |
. . . . 5
|
| 30 | 29 | oveqd 5961 |
. . . 4
|
| 31 | 17, 30, 10 | 3eltr4d 2289 |
. . 3
|
| 32 | 31 | ralrimivva 2588 |
. 2
|
| 33 | 9 | adantr 276 |
. . 3
|
| 34 | 28 | adantr 276 |
. . 3
|
| 35 | ovrspc2v 5970 |
. . . . . 6
| |
| 36 | 35 | ancoms 268 |
. . . . 5
|
| 37 | 36 | 3impb 1202 |
. . . 4
|
| 38 | 37 | 3adant1l 1233 |
. . 3
|
| 39 | simpl1 1003 |
. . . 4
| |
| 40 | simpl2 1004 |
. . . . . . 7
| |
| 41 | 40 | sseld 3192 |
. . . . . 6
|
| 42 | 40 | sseld 3192 |
. . . . . 6
|
| 43 | 40 | sseld 3192 |
. . . . . 6
|
| 44 | 41, 42, 43 | 3anim123d 1332 |
. . . . 5
|
| 45 | 44 | imp 124 |
. . . 4
|
| 46 | 5, 18 | mndass 13256 |
. . . 4
|
| 47 | 39, 45, 46 | syl2an2r 595 |
. . 3
|
| 48 | simpl3 1005 |
. . 3
| |
| 49 | 40 | sselda 3193 |
. . . 4
|
| 50 | issubmnd.z |
. . . . 5
| |
| 51 | 5, 18, 50 | mndlid 13267 |
. . . 4
|
| 52 | 39, 49, 51 | syl2an2r 595 |
. . 3
|
| 53 | 5, 18, 50 | mndrid 13268 |
. . . 4
|
| 54 | 39, 49, 53 | syl2an2r 595 |
. . 3
|
| 55 | 33, 34, 38, 47, 48, 52, 54 | ismndd 13269 |
. 2
|
| 56 | 32, 55 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 |
| This theorem is referenced by: issubm2 13305 |
| Copyright terms: Public domain | W3C validator |