| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubmnd | Unicode version | ||
| Description: Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| issubmnd.b |
|
| issubmnd.p |
|
| issubmnd.z |
|
| issubmnd.h |
|
| Ref | Expression |
|---|---|
| issubmnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . . 5
| |
| 2 | simprl 529 |
. . . . . 6
| |
| 3 | issubmnd.h |
. . . . . . . . 9
| |
| 4 | 3 | a1i 9 |
. . . . . . . 8
|
| 5 | issubmnd.b |
. . . . . . . . 9
| |
| 6 | 5 | a1i 9 |
. . . . . . . 8
|
| 7 | simp1 1021 |
. . . . . . . 8
| |
| 8 | simp2 1022 |
. . . . . . . 8
| |
| 9 | 4, 6, 7, 8 | ressbas2d 13101 |
. . . . . . 7
|
| 10 | 9 | ad2antrr 488 |
. . . . . 6
|
| 11 | 2, 10 | eleqtrd 2308 |
. . . . 5
|
| 12 | simprr 531 |
. . . . . 6
| |
| 13 | 12, 10 | eleqtrd 2308 |
. . . . 5
|
| 14 | eqid 2229 |
. . . . . 6
| |
| 15 | eqid 2229 |
. . . . . 6
| |
| 16 | 14, 15 | mndcl 13456 |
. . . . 5
|
| 17 | 1, 11, 13, 16 | syl3anc 1271 |
. . . 4
|
| 18 | issubmnd.p |
. . . . . . . 8
| |
| 19 | 18 | a1i 9 |
. . . . . . 7
|
| 20 | basfn 13091 |
. . . . . . . . . . 11
| |
| 21 | elex 2811 |
. . . . . . . . . . 11
| |
| 22 | funfvex 5644 |
. . . . . . . . . . . 12
| |
| 23 | 22 | funfni 5423 |
. . . . . . . . . . 11
|
| 24 | 20, 21, 23 | sylancr 414 |
. . . . . . . . . 10
|
| 25 | 5, 24 | eqeltrid 2316 |
. . . . . . . . 9
|
| 26 | 7, 25 | syl 14 |
. . . . . . . 8
|
| 27 | 26, 8 | ssexd 4224 |
. . . . . . 7
|
| 28 | 4, 19, 27, 7 | ressplusgd 13162 |
. . . . . 6
|
| 29 | 28 | ad2antrr 488 |
. . . . 5
|
| 30 | 29 | oveqd 6018 |
. . . 4
|
| 31 | 17, 30, 10 | 3eltr4d 2313 |
. . 3
|
| 32 | 31 | ralrimivva 2612 |
. 2
|
| 33 | 9 | adantr 276 |
. . 3
|
| 34 | 28 | adantr 276 |
. . 3
|
| 35 | ovrspc2v 6027 |
. . . . . 6
| |
| 36 | 35 | ancoms 268 |
. . . . 5
|
| 37 | 36 | 3impb 1223 |
. . . 4
|
| 38 | 37 | 3adant1l 1254 |
. . 3
|
| 39 | simpl1 1024 |
. . . 4
| |
| 40 | simpl2 1025 |
. . . . . . 7
| |
| 41 | 40 | sseld 3223 |
. . . . . 6
|
| 42 | 40 | sseld 3223 |
. . . . . 6
|
| 43 | 40 | sseld 3223 |
. . . . . 6
|
| 44 | 41, 42, 43 | 3anim123d 1353 |
. . . . 5
|
| 45 | 44 | imp 124 |
. . . 4
|
| 46 | 5, 18 | mndass 13457 |
. . . 4
|
| 47 | 39, 45, 46 | syl2an2r 597 |
. . 3
|
| 48 | simpl3 1026 |
. . 3
| |
| 49 | 40 | sselda 3224 |
. . . 4
|
| 50 | issubmnd.z |
. . . . 5
| |
| 51 | 5, 18, 50 | mndlid 13468 |
. . . 4
|
| 52 | 39, 49, 51 | syl2an2r 597 |
. . 3
|
| 53 | 5, 18, 50 | mndrid 13469 |
. . . 4
|
| 54 | 39, 49, 53 | syl2an2r 597 |
. . 3
|
| 55 | 33, 34, 38, 47, 48, 52, 54 | ismndd 13470 |
. 2
|
| 56 | 32, 55 | impbida 598 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 |
| This theorem is referenced by: issubm2 13506 |
| Copyright terms: Public domain | W3C validator |