| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubmnd | Unicode version | ||
| Description: Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| issubmnd.b |
|
| issubmnd.p |
|
| issubmnd.z |
|
| issubmnd.h |
|
| Ref | Expression |
|---|---|
| issubmnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . . 5
| |
| 2 | simprl 529 |
. . . . . 6
| |
| 3 | issubmnd.h |
. . . . . . . . 9
| |
| 4 | 3 | a1i 9 |
. . . . . . . 8
|
| 5 | issubmnd.b |
. . . . . . . . 9
| |
| 6 | 5 | a1i 9 |
. . . . . . . 8
|
| 7 | simp1 999 |
. . . . . . . 8
| |
| 8 | simp2 1000 |
. . . . . . . 8
| |
| 9 | 4, 6, 7, 8 | ressbas2d 12771 |
. . . . . . 7
|
| 10 | 9 | ad2antrr 488 |
. . . . . 6
|
| 11 | 2, 10 | eleqtrd 2275 |
. . . . 5
|
| 12 | simprr 531 |
. . . . . 6
| |
| 13 | 12, 10 | eleqtrd 2275 |
. . . . 5
|
| 14 | eqid 2196 |
. . . . . 6
| |
| 15 | eqid 2196 |
. . . . . 6
| |
| 16 | 14, 15 | mndcl 13125 |
. . . . 5
|
| 17 | 1, 11, 13, 16 | syl3anc 1249 |
. . . 4
|
| 18 | issubmnd.p |
. . . . . . . 8
| |
| 19 | 18 | a1i 9 |
. . . . . . 7
|
| 20 | basfn 12761 |
. . . . . . . . . . 11
| |
| 21 | elex 2774 |
. . . . . . . . . . 11
| |
| 22 | funfvex 5578 |
. . . . . . . . . . . 12
| |
| 23 | 22 | funfni 5361 |
. . . . . . . . . . 11
|
| 24 | 20, 21, 23 | sylancr 414 |
. . . . . . . . . 10
|
| 25 | 5, 24 | eqeltrid 2283 |
. . . . . . . . 9
|
| 26 | 7, 25 | syl 14 |
. . . . . . . 8
|
| 27 | 26, 8 | ssexd 4174 |
. . . . . . 7
|
| 28 | 4, 19, 27, 7 | ressplusgd 12831 |
. . . . . 6
|
| 29 | 28 | ad2antrr 488 |
. . . . 5
|
| 30 | 29 | oveqd 5942 |
. . . 4
|
| 31 | 17, 30, 10 | 3eltr4d 2280 |
. . 3
|
| 32 | 31 | ralrimivva 2579 |
. 2
|
| 33 | 9 | adantr 276 |
. . 3
|
| 34 | 28 | adantr 276 |
. . 3
|
| 35 | ovrspc2v 5951 |
. . . . . 6
| |
| 36 | 35 | ancoms 268 |
. . . . 5
|
| 37 | 36 | 3impb 1201 |
. . . 4
|
| 38 | 37 | 3adant1l 1232 |
. . 3
|
| 39 | simpl1 1002 |
. . . 4
| |
| 40 | simpl2 1003 |
. . . . . . 7
| |
| 41 | 40 | sseld 3183 |
. . . . . 6
|
| 42 | 40 | sseld 3183 |
. . . . . 6
|
| 43 | 40 | sseld 3183 |
. . . . . 6
|
| 44 | 41, 42, 43 | 3anim123d 1330 |
. . . . 5
|
| 45 | 44 | imp 124 |
. . . 4
|
| 46 | 5, 18 | mndass 13126 |
. . . 4
|
| 47 | 39, 45, 46 | syl2an2r 595 |
. . 3
|
| 48 | simpl3 1004 |
. . 3
| |
| 49 | 40 | sselda 3184 |
. . . 4
|
| 50 | issubmnd.z |
. . . . 5
| |
| 51 | 5, 18, 50 | mndlid 13137 |
. . . 4
|
| 52 | 39, 49, 51 | syl2an2r 595 |
. . 3
|
| 53 | 5, 18, 50 | mndrid 13138 |
. . . 4
|
| 54 | 39, 49, 53 | syl2an2r 595 |
. . 3
|
| 55 | 33, 34, 38, 47, 48, 52, 54 | ismndd 13139 |
. 2
|
| 56 | 32, 55 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 |
| This theorem is referenced by: issubm2 13175 |
| Copyright terms: Public domain | W3C validator |