ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsmulsqcoprm Unicode version

Theorem lgsmulsqcoprm 13547
Description: The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
lgsmulsqcoprm  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( ( A ^ 2 )  x.  B )  /L
N )  =  ( B  /L N ) )

Proof of Theorem lgsmulsqcoprm
StepHypRef Expression
1 zsqcl 10521 . . . . 5  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
21adantr 274 . . . 4  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  -> 
( A ^ 2 )  e.  ZZ )
3 simpl 108 . . . 4  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  ZZ )
4 simpl 108 . . . 4  |-  ( ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  e.  ZZ )
52, 3, 43anim123i 1174 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( A ^
2 )  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )
)
6 zcn 9192 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  CC )
7 sqne0 10516 . . . . . . 7  |-  ( A  e.  CC  ->  (
( A ^ 2 )  =/=  0  <->  A  =/=  0 ) )
86, 7syl 14 . . . . . 6  |-  ( A  e.  ZZ  ->  (
( A ^ 2 )  =/=  0  <->  A  =/=  0 ) )
98biimpar 295 . . . . 5  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  -> 
( A ^ 2 )  =/=  0 )
10 simpr 109 . . . . 5  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  =/=  0 )
119, 10anim12i 336 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( A ^
2 )  =/=  0  /\  B  =/=  0
) )
12113adant3 1007 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( A ^
2 )  =/=  0  /\  B  =/=  0
) )
13 lgsdir 13536 . . 3  |-  ( ( ( ( A ^
2 )  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( A ^
2 )  =/=  0  /\  B  =/=  0
) )  ->  (
( ( A ^
2 )  x.  B
)  /L N )  =  ( ( ( A ^ 2 )  /L N )  x.  ( B  /L N ) ) )
145, 12, 13syl2anc 409 . 2  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( ( A ^ 2 )  x.  B )  /L
N )  =  ( ( ( A ^
2 )  /L
N )  x.  ( B  /L N ) ) )
15 3anass 972 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  <-> 
( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) ) )
1615biimpri 132 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
17163adant2 1006 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
18 lgssq 13541 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( A ^ 2 )  /L N )  =  1 )
1917, 18syl 14 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( A ^
2 )  /L
N )  =  1 )
2019oveq1d 5856 . 2  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( ( A ^ 2 )  /L N )  x.  ( B  /L
N ) )  =  ( 1  x.  ( B  /L N ) ) )
213, 4anim12i 336 . . . . . 6  |-  ( ( ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( B  e.  ZZ  /\  N  e.  ZZ ) )
22213adant1 1005 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( B  e.  ZZ  /\  N  e.  ZZ ) )
23 lgscl 13515 . . . . 5  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ )  ->  ( B  /L
N )  e.  ZZ )
2422, 23syl 14 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( B  /L
N )  e.  ZZ )
2524zcnd 9310 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( B  /L
N )  e.  CC )
2625mulid2d 7913 . 2  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( 1  x.  ( B  /L N ) )  =  ( B  /L N ) )
2714, 20, 263eqtrd 2202 1  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( ( A ^ 2 )  x.  B )  /L
N )  =  ( B  /L N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2335  (class class class)co 5841   CCcc 7747   0cc0 7749   1c1 7750    x. cmul 7754   2c2 8904   ZZcz 9187   ^cexp 10450    gcd cgcd 11871    /Lclgs 13498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-irdg 6334  df-frec 6355  df-1o 6380  df-2o 6381  df-oadd 6384  df-er 6497  df-en 6703  df-dom 6704  df-fin 6705  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-5 8915  df-6 8916  df-7 8917  df-8 8918  df-9 8919  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-ihash 10685  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-clim 11216  df-proddc 11488  df-dvds 11724  df-gcd 11872  df-prm 12036  df-phi 12139  df-pc 12213  df-lgs 13499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator