ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsmulsqcoprm Unicode version

Theorem lgsmulsqcoprm 14114
Description: The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
lgsmulsqcoprm  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( ( A ^ 2 )  x.  B )  /L
N )  =  ( B  /L N ) )

Proof of Theorem lgsmulsqcoprm
StepHypRef Expression
1 zsqcl 10576 . . . . 5  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
21adantr 276 . . . 4  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  -> 
( A ^ 2 )  e.  ZZ )
3 simpl 109 . . . 4  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  ZZ )
4 simpl 109 . . . 4  |-  ( ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  e.  ZZ )
52, 3, 43anim123i 1184 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( A ^
2 )  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )
)
6 zcn 9247 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  CC )
7 sqne0 10571 . . . . . . 7  |-  ( A  e.  CC  ->  (
( A ^ 2 )  =/=  0  <->  A  =/=  0 ) )
86, 7syl 14 . . . . . 6  |-  ( A  e.  ZZ  ->  (
( A ^ 2 )  =/=  0  <->  A  =/=  0 ) )
98biimpar 297 . . . . 5  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  -> 
( A ^ 2 )  =/=  0 )
10 simpr 110 . . . . 5  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  =/=  0 )
119, 10anim12i 338 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( A ^
2 )  =/=  0  /\  B  =/=  0
) )
12113adant3 1017 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( A ^
2 )  =/=  0  /\  B  =/=  0
) )
13 lgsdir 14103 . . 3  |-  ( ( ( ( A ^
2 )  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( A ^
2 )  =/=  0  /\  B  =/=  0
) )  ->  (
( ( A ^
2 )  x.  B
)  /L N )  =  ( ( ( A ^ 2 )  /L N )  x.  ( B  /L N ) ) )
145, 12, 13syl2anc 411 . 2  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( ( A ^ 2 )  x.  B )  /L
N )  =  ( ( ( A ^
2 )  /L
N )  x.  ( B  /L N ) ) )
15 3anass 982 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  <-> 
( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) ) )
1615biimpri 133 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
17163adant2 1016 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
18 lgssq 14108 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( A ^ 2 )  /L N )  =  1 )
1917, 18syl 14 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( A ^
2 )  /L
N )  =  1 )
2019oveq1d 5884 . 2  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( ( A ^ 2 )  /L N )  x.  ( B  /L
N ) )  =  ( 1  x.  ( B  /L N ) ) )
213, 4anim12i 338 . . . . . 6  |-  ( ( ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( B  e.  ZZ  /\  N  e.  ZZ ) )
22213adant1 1015 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( B  e.  ZZ  /\  N  e.  ZZ ) )
23 lgscl 14082 . . . . 5  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ )  ->  ( B  /L
N )  e.  ZZ )
2422, 23syl 14 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( B  /L
N )  e.  ZZ )
2524zcnd 9365 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( B  /L
N )  e.  CC )
2625mulid2d 7966 . 2  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( 1  x.  ( B  /L N ) )  =  ( B  /L N ) )
2714, 20, 263eqtrd 2214 1  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  -> 
( ( ( A ^ 2 )  x.  B )  /L
N )  =  ( B  /L N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347  (class class class)co 5869   CCcc 7800   0cc0 7802   1c1 7803    x. cmul 7807   2c2 8959   ZZcz 9242   ^cexp 10505    gcd cgcd 11926    /Lclgs 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-9 8974  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543  df-dvds 11779  df-gcd 11927  df-prm 12091  df-phi 12194  df-pc 12268  df-lgs 14066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator