ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz1b Unicode version

Theorem elfz1b 10084
Description: Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
elfz1b  |-  ( N  e.  ( 1 ... M )  <->  ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M ) )

Proof of Theorem elfz1b
StepHypRef Expression
1 elfz2 10010 . 2  |-  ( N  e.  ( 1 ... M )  <->  ( (
1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
1  <_  N  /\  N  <_  M ) ) )
2 simpl 109 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  1  <_  N )  ->  N  e.  ZZ )
3 0red 7954 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  0  e.  RR )
4 1red 7968 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  1  e.  RR )
5 zre 9252 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
63, 4, 53jca 1177 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  (
0  e.  RR  /\  1  e.  RR  /\  N  e.  RR ) )
76adantr 276 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )
)
8 0lt1 8079 . . . . . . . . . . . 12  |-  0  <  1
98a1i 9 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
0  <  1 )
10 simpr 110 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
1  <_  N )
11 ltletr 8042 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
1211imp 124 . . . . . . . . . . 11  |-  ( ( ( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  /\  ( 0  <  1  /\  1  <_  N ) )  ->  0  <  N )
137, 9, 10, 12syl12anc 1236 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
0  <  N )
14 elnnz 9258 . . . . . . . . . 10  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
152, 13, 14sylanbrc 417 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  1  <_  N )  ->  N  e.  NN )
1615ex 115 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
1  <_  N  ->  N  e.  NN ) )
17163ad2ant3 1020 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  <_  N  ->  N  e.  NN ) )
1817com12 30 . . . . . 6  |-  ( 1  <_  N  ->  (
( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  NN ) )
1918adantr 276 . . . . 5  |-  ( ( 1  <_  N  /\  N  <_  M )  -> 
( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  NN ) )
2019impcom 125 . . . 4  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  ->  N  e.  NN )
21 zre 9252 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  e.  RR )
22 zre 9252 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  RR )
2321, 5, 223anim123i 1184 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
1  e.  RR  /\  N  e.  RR  /\  M  e.  RR ) )
24233com23 1209 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  e.  RR  /\  N  e.  RR  /\  M  e.  RR ) )
25 letr 8035 . . . . . . 7  |-  ( ( 1  e.  RR  /\  N  e.  RR  /\  M  e.  RR )  ->  (
( 1  <_  N  /\  N  <_  M )  ->  1  <_  M
) )
2624, 25syl 14 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( 1  <_  N  /\  N  <_  M )  ->  1  <_  M
) )
27 simpl 109 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  1  <_  M )  ->  M  e.  ZZ )
28 0red 7954 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
0  e.  RR )
29 1red 7968 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
1  e.  RR )
3022adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  ->  M  e.  RR )
318a1i 9 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
0  <  1 )
32 simpr 110 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
1  <_  M )
3328, 29, 30, 31, 32ltletrd 8375 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
0  <  M )
34 elnnz 9258 . . . . . . . . 9  |-  ( M  e.  NN  <->  ( M  e.  ZZ  /\  0  < 
M ) )
3527, 33, 34sylanbrc 417 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  1  <_  M )  ->  M  e.  NN )
3635ex 115 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
1  <_  M  ->  M  e.  NN ) )
37363ad2ant2 1019 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  <_  M  ->  M  e.  NN ) )
3826, 37syld 45 . . . . 5  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( 1  <_  N  /\  N  <_  M )  ->  M  e.  NN ) )
3938imp 124 . . . 4  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  ->  M  e.  NN )
40 simprr 531 . . . 4  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  ->  N  <_  M )
4120, 39, 403jca 1177 . . 3  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  ->  ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M ) )
42 1zzd 9275 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  1  e.  ZZ )
43 nnz 9267 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  ZZ )
44433ad2ant2 1019 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  M  e.  ZZ )
45 nnz 9267 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
46453ad2ant1 1018 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  N  e.  ZZ )
4742, 44, 463jca 1177 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  (
1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )
48 nnge1 8937 . . . . 5  |-  ( N  e.  NN  ->  1  <_  N )
49483ad2ant1 1018 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  1  <_  N )
50 simp3 999 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  N  <_  M )
5147, 49, 50jca32 310 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  (
( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) ) )
5241, 51impbii 126 . 2  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  <->  ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M ) )
531, 52bitri 184 1  |-  ( N  e.  ( 1 ... M )  <->  ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4002  (class class class)co 5871   RRcr 7806   0cc0 7807   1c1 7808    < clt 7987    <_ cle 7988   NNcn 8914   ZZcz 9248   ...cfz 10003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7898  ax-resscn 7899  ax-1cn 7900  ax-1re 7901  ax-icn 7902  ax-addcl 7903  ax-addrcl 7904  ax-mulcl 7905  ax-addcom 7907  ax-addass 7909  ax-distr 7911  ax-i2m1 7912  ax-0lt1 7913  ax-0id 7915  ax-rnegex 7916  ax-cnre 7918  ax-pre-ltirr 7919  ax-pre-ltwlin 7920  ax-pre-lttrn 7921  ax-pre-ltadd 7923
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5176  df-fun 5216  df-fv 5222  df-riota 5827  df-ov 5874  df-oprab 5875  df-mpo 5876  df-pnf 7989  df-mnf 7990  df-xr 7991  df-ltxr 7992  df-le 7993  df-sub 8125  df-neg 8126  df-inn 8915  df-z 9249  df-fz 10004
This theorem is referenced by:  ubmelfzo  10194  eulerthlema  12221  cvgcmp2nlemabs  14631
  Copyright terms: Public domain W3C validator