ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz1b Unicode version

Theorem elfz1b 9825
Description: Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
elfz1b  |-  ( N  e.  ( 1 ... M )  <->  ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M ) )

Proof of Theorem elfz1b
StepHypRef Expression
1 elfz2 9752 . 2  |-  ( N  e.  ( 1 ... M )  <->  ( (
1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
1  <_  N  /\  N  <_  M ) ) )
2 simpl 108 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  1  <_  N )  ->  N  e.  ZZ )
3 0red 7735 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  0  e.  RR )
4 1red 7749 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  1  e.  RR )
5 zre 9016 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
63, 4, 53jca 1146 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  (
0  e.  RR  /\  1  e.  RR  /\  N  e.  RR ) )
76adantr 274 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )
)
8 0lt1 7857 . . . . . . . . . . . 12  |-  0  <  1
98a1i 9 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
0  <  1 )
10 simpr 109 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
1  <_  N )
11 ltletr 7821 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
1211imp 123 . . . . . . . . . . 11  |-  ( ( ( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  /\  ( 0  <  1  /\  1  <_  N ) )  ->  0  <  N )
137, 9, 10, 12syl12anc 1199 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
0  <  N )
14 elnnz 9022 . . . . . . . . . 10  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
152, 13, 14sylanbrc 413 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  1  <_  N )  ->  N  e.  NN )
1615ex 114 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
1  <_  N  ->  N  e.  NN ) )
17163ad2ant3 989 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  <_  N  ->  N  e.  NN ) )
1817com12 30 . . . . . 6  |-  ( 1  <_  N  ->  (
( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  NN ) )
1918adantr 274 . . . . 5  |-  ( ( 1  <_  N  /\  N  <_  M )  -> 
( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  NN ) )
2019impcom 124 . . . 4  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  ->  N  e.  NN )
21 zre 9016 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  e.  RR )
22 zre 9016 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  RR )
2321, 5, 223anim123i 1151 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
1  e.  RR  /\  N  e.  RR  /\  M  e.  RR ) )
24233com23 1172 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  e.  RR  /\  N  e.  RR  /\  M  e.  RR ) )
25 letr 7815 . . . . . . 7  |-  ( ( 1  e.  RR  /\  N  e.  RR  /\  M  e.  RR )  ->  (
( 1  <_  N  /\  N  <_  M )  ->  1  <_  M
) )
2624, 25syl 14 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( 1  <_  N  /\  N  <_  M )  ->  1  <_  M
) )
27 simpl 108 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  1  <_  M )  ->  M  e.  ZZ )
28 0red 7735 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
0  e.  RR )
29 1red 7749 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
1  e.  RR )
3022adantr 274 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  ->  M  e.  RR )
318a1i 9 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
0  <  1 )
32 simpr 109 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
1  <_  M )
3328, 29, 30, 31, 32ltletrd 8153 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
0  <  M )
34 elnnz 9022 . . . . . . . . 9  |-  ( M  e.  NN  <->  ( M  e.  ZZ  /\  0  < 
M ) )
3527, 33, 34sylanbrc 413 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  1  <_  M )  ->  M  e.  NN )
3635ex 114 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
1  <_  M  ->  M  e.  NN ) )
37363ad2ant2 988 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  <_  M  ->  M  e.  NN ) )
3826, 37syld 45 . . . . 5  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( 1  <_  N  /\  N  <_  M )  ->  M  e.  NN ) )
3938imp 123 . . . 4  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  ->  M  e.  NN )
40 simprr 506 . . . 4  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  ->  N  <_  M )
4120, 39, 403jca 1146 . . 3  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  ->  ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M ) )
42 1zzd 9039 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  1  e.  ZZ )
43 nnz 9031 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  ZZ )
44433ad2ant2 988 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  M  e.  ZZ )
45 nnz 9031 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
46453ad2ant1 987 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  N  e.  ZZ )
4742, 44, 463jca 1146 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  (
1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )
48 nnge1 8707 . . . . 5  |-  ( N  e.  NN  ->  1  <_  N )
49483ad2ant1 987 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  1  <_  N )
50 simp3 968 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  N  <_  M )
5147, 49, 50jca32 308 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  (
( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) ) )
5241, 51impbii 125 . 2  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  <->  ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M ) )
531, 52bitri 183 1  |-  ( N  e.  ( 1 ... M )  <->  ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    e. wcel 1465   class class class wbr 3899  (class class class)co 5742   RRcr 7587   0cc0 7588   1c1 7589    < clt 7768    <_ cle 7769   NNcn 8684   ZZcz 9012   ...cfz 9745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8685  df-z 9013  df-fz 9746
This theorem is referenced by:  ubmelfzo  9932  cvgcmp2nlemabs  13123
  Copyright terms: Public domain W3C validator