| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfz0fzfz0 | Unicode version | ||
| Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.) |
| Ref | Expression |
|---|---|
| elfz0fzfz0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 10308 |
. . . 4
| |
| 2 | elfz2 10211 |
. . . . . 6
| |
| 3 | nn0re 9378 |
. . . . . . . . . . . . . . . . . 18
| |
| 4 | nn0re 9378 |
. . . . . . . . . . . . . . . . . 18
| |
| 5 | zre 9450 |
. . . . . . . . . . . . . . . . . 18
| |
| 6 | 3, 4, 5 | 3anim123i 1208 |
. . . . . . . . . . . . . . . . 17
|
| 7 | 6 | 3expa 1227 |
. . . . . . . . . . . . . . . 16
|
| 8 | letr 8229 |
. . . . . . . . . . . . . . . 16
| |
| 9 | 7, 8 | syl 14 |
. . . . . . . . . . . . . . 15
|
| 10 | simplll 533 |
. . . . . . . . . . . . . . . . 17
| |
| 11 | simpr 110 |
. . . . . . . . . . . . . . . . . . 19
| |
| 12 | 11 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
|
| 13 | elnn0z 9459 |
. . . . . . . . . . . . . . . . . . . . . 22
| |
| 14 | 0red 8147 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
| |
| 15 | zre 9450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
| |
| 16 | 15 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
|
| 17 | 5 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
|
| 18 | letr 8229 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
| |
| 19 | 14, 16, 17, 18 | syl3anc 1271 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
|
| 20 | 19 | exp4b 367 |
. . . . . . . . . . . . . . . . . . . . . . . 24
|
| 21 | 20 | com23 78 |
. . . . . . . . . . . . . . . . . . . . . . 23
|
| 22 | 21 | imp 124 |
. . . . . . . . . . . . . . . . . . . . . 22
|
| 23 | 13, 22 | sylbi 121 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 24 | 23 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
|
| 25 | 24 | imp 124 |
. . . . . . . . . . . . . . . . . . 19
|
| 26 | 25 | imp 124 |
. . . . . . . . . . . . . . . . . 18
|
| 27 | elnn0z 9459 |
. . . . . . . . . . . . . . . . . 18
| |
| 28 | 12, 26, 27 | sylanbrc 417 |
. . . . . . . . . . . . . . . . 17
|
| 29 | simpr 110 |
. . . . . . . . . . . . . . . . 17
| |
| 30 | 10, 28, 29 | 3jca 1201 |
. . . . . . . . . . . . . . . 16
|
| 31 | 30 | ex 115 |
. . . . . . . . . . . . . . 15
|
| 32 | 9, 31 | syld 45 |
. . . . . . . . . . . . . 14
|
| 33 | 32 | exp4b 367 |
. . . . . . . . . . . . 13
|
| 34 | 33 | com23 78 |
. . . . . . . . . . . 12
|
| 35 | 34 | 3impia 1224 |
. . . . . . . . . . 11
|
| 36 | 35 | com13 80 |
. . . . . . . . . 10
|
| 37 | 36 | adantr 276 |
. . . . . . . . 9
|
| 38 | 37 | com12 30 |
. . . . . . . 8
|
| 39 | 38 | 3ad2ant3 1044 |
. . . . . . 7
|
| 40 | 39 | imp 124 |
. . . . . 6
|
| 41 | 2, 40 | sylbi 121 |
. . . . 5
|
| 42 | 41 | com12 30 |
. . . 4
|
| 43 | 1, 42 | sylbi 121 |
. . 3
|
| 44 | 43 | imp 124 |
. 2
|
| 45 | elfz2nn0 10308 |
. 2
| |
| 46 | 44, 45 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: pfxccatin12lem2c 11262 |
| Copyright terms: Public domain | W3C validator |