ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz0fzfz0 Unicode version

Theorem elfz0fzfz0 10061
Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.)
Assertion
Ref Expression
elfz0fzfz0  |-  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... X ) )  ->  M  e.  ( 0 ... N ) )

Proof of Theorem elfz0fzfz0
StepHypRef Expression
1 elfz2nn0 10047 . . . 4  |-  ( M  e.  ( 0 ... L )  <->  ( M  e.  NN0  /\  L  e. 
NN0  /\  M  <_  L ) )
2 elfz2 9951 . . . . . 6  |-  ( N  e.  ( L ... X )  <->  ( ( L  e.  ZZ  /\  X  e.  ZZ  /\  N  e.  ZZ )  /\  ( L  <_  N  /\  N  <_  X ) ) )
3 nn0re 9123 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  NN0  ->  M  e.  RR )
4 nn0re 9123 . . . . . . . . . . . . . . . . . 18  |-  ( L  e.  NN0  ->  L  e.  RR )
5 zre 9195 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ZZ  ->  N  e.  RR )
63, 4, 53anim123i 1174 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  N  e.  ZZ )  ->  ( M  e.  RR  /\  L  e.  RR  /\  N  e.  RR ) )
763expa 1193 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  ->  ( M  e.  RR  /\  L  e.  RR  /\  N  e.  RR ) )
8 letr 7981 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  L  e.  RR  /\  N  e.  RR )  ->  (
( M  <_  L  /\  L  <_  N )  ->  M  <_  N
) )
97, 8syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  ->  ( ( M  <_  L  /\  L  <_  N )  ->  M  <_  N ) )
10 simplll 523 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e. 
NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  /\  M  <_  N )  ->  M  e.  NN0 )
11 simpr 109 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  ->  N  e.  ZZ )
1211adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  e. 
NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  /\  M  <_  N )  ->  N  e.  ZZ )
13 elnn0z 9204 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  e.  NN0  <->  ( M  e.  ZZ  /\  0  <_  M ) )
14 0red 7900 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  RR )
15 zre 9195 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( M  e.  ZZ  ->  M  e.  RR )
1615adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
175adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
18 letr 7981 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( 0  e.  RR  /\  M  e.  RR  /\  N  e.  RR )  ->  (
( 0  <_  M  /\  M  <_  N )  ->  0  <_  N
) )
1914, 16, 17, 18syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  <_  M  /\  M  <_  N
)  ->  0  <_  N ) )
2019exp4b 365 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ( 0  <_  M  ->  ( M  <_  N  ->  0  <_  N ) ) ) )
2120com23 78 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  e.  ZZ  ->  (
0  <_  M  ->  ( N  e.  ZZ  ->  ( M  <_  N  ->  0  <_  N ) ) ) )
2221imp 123 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  ZZ  /\  0  <_  M )  -> 
( N  e.  ZZ  ->  ( M  <_  N  ->  0  <_  N )
) )
2313, 22sylbi 120 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  NN0  ->  ( N  e.  ZZ  ->  ( M  <_  N  ->  0  <_  N ) ) )
2423adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( N  e.  ZZ  ->  ( M  <_  N  ->  0  <_  N )
) )
2524imp 123 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  ->  ( M  <_  N  ->  0  <_  N
) )
2625imp 123 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  e. 
NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  /\  M  <_  N )  ->  0  <_  N )
27 elnn0z 9204 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )
2812, 26, 27sylanbrc 414 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e. 
NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  /\  M  <_  N )  ->  N  e.  NN0 )
29 simpr 109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e. 
NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  /\  M  <_  N )  ->  M  <_  N )
3010, 28, 293jca 1167 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( M  e. 
NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  /\  M  <_  N )  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) )
3130ex 114 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  ->  ( M  <_  N  ->  ( M  e. 
NN0  /\  N  e.  NN0 
/\  M  <_  N
) ) )
329, 31syld 45 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  ->  ( ( M  <_  L  /\  L  <_  N )  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) )
3332exp4b 365 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( N  e.  ZZ  ->  ( M  <_  L  ->  ( L  <_  N  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) ) ) )
3433com23 78 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( M  <_  L  ->  ( N  e.  ZZ  ->  ( L  <_  N  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) ) ) )
35343impia 1190 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  ( N  e.  ZZ  ->  ( L  <_  N  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) ) )
3635com13 80 . . . . . . . . . 10  |-  ( L  <_  N  ->  ( N  e.  ZZ  ->  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  -> 
( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) ) )
3736adantr 274 . . . . . . . . 9  |-  ( ( L  <_  N  /\  N  <_  X )  -> 
( N  e.  ZZ  ->  ( ( M  e. 
NN0  /\  L  e.  NN0 
/\  M  <_  L
)  ->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) ) ) )
3837com12 30 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( L  <_  N  /\  N  <_  X )  ->  ( ( M  e.  NN0  /\  L  e. 
NN0  /\  M  <_  L )  ->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) ) ) )
39383ad2ant3 1010 . . . . . . 7  |-  ( ( L  e.  ZZ  /\  X  e.  ZZ  /\  N  e.  ZZ )  ->  (
( L  <_  N  /\  N  <_  X )  ->  ( ( M  e.  NN0  /\  L  e. 
NN0  /\  M  <_  L )  ->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) ) ) )
4039imp 123 . . . . . 6  |-  ( ( ( L  e.  ZZ  /\  X  e.  ZZ  /\  N  e.  ZZ )  /\  ( L  <_  N  /\  N  <_  X ) )  ->  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) )
412, 40sylbi 120 . . . . 5  |-  ( N  e.  ( L ... X )  ->  (
( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  -> 
( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) )
4241com12 30 . . . 4  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  ( N  e.  ( L ... X )  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) )
431, 42sylbi 120 . . 3  |-  ( M  e.  ( 0 ... L )  ->  ( N  e.  ( L ... X )  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) )
4443imp 123 . 2  |-  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... X ) )  -> 
( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) )
45 elfz2nn0 10047 . 2  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
4644, 45sylibr 133 1  |-  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... X ) )  ->  M  e.  ( 0 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753    <_ cle 7934   NN0cn0 9114   ZZcz 9191   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator