| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > le2tri3i | Unicode version | ||
| Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.) |
| Ref | Expression |
|---|---|
| lt.1 |
|
| lt.2 |
|
| lt.3 |
|
| Ref | Expression |
|---|---|
| le2tri3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.2 |
. . . . . 6
| |
| 2 | lt.3 |
. . . . . 6
| |
| 3 | lt.1 |
. . . . . 6
| |
| 4 | 1, 2, 3 | letri 8254 |
. . . . 5
|
| 5 | 3, 1 | letri3i 8245 |
. . . . . 6
|
| 6 | 5 | biimpri 133 |
. . . . 5
|
| 7 | 4, 6 | sylan2 286 |
. . . 4
|
| 8 | 7 | 3impb 1223 |
. . 3
|
| 9 | 2, 3, 1 | letri 8254 |
. . . . . 6
|
| 10 | 1, 2 | letri3i 8245 |
. . . . . . 7
|
| 11 | 10 | biimpri 133 |
. . . . . 6
|
| 12 | 9, 11 | sylan2 286 |
. . . . 5
|
| 13 | 12 | 3impb 1223 |
. . . 4
|
| 14 | 13 | 3comr 1235 |
. . 3
|
| 15 | 3, 1, 2 | letri 8254 |
. . . . 5
|
| 16 | 3, 2 | letri3i 8245 |
. . . . . . 7
|
| 17 | 16 | biimpri 133 |
. . . . . 6
|
| 18 | 17 | eqcomd 2235 |
. . . . 5
|
| 19 | 15, 18 | sylan 283 |
. . . 4
|
| 20 | 19 | 3impa 1218 |
. . 3
|
| 21 | 8, 14, 20 | 3jca 1201 |
. 2
|
| 22 | 3 | eqlei 8240 |
. . 3
|
| 23 | 1 | eqlei 8240 |
. . 3
|
| 24 | 2 | eqlei 8240 |
. . 3
|
| 25 | 22, 23, 24 | 3anim123i 1208 |
. 2
|
| 26 | 21, 25 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-apti 8114 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |