ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le2tri3i Unicode version

Theorem le2tri3i 8255
Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
lt.3  |-  C  e.  RR
Assertion
Ref Expression
le2tri3i  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  <->  ( A  =  B  /\  B  =  C  /\  C  =  A ) )

Proof of Theorem le2tri3i
StepHypRef Expression
1 lt.2 . . . . . 6  |-  B  e.  RR
2 lt.3 . . . . . 6  |-  C  e.  RR
3 lt.1 . . . . . 6  |-  A  e.  RR
41, 2, 3letri 8254 . . . . 5  |-  ( ( B  <_  C  /\  C  <_  A )  ->  B  <_  A )
53, 1letri3i 8245 . . . . . 6  |-  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) )
65biimpri 133 . . . . 5  |-  ( ( A  <_  B  /\  B  <_  A )  ->  A  =  B )
74, 6sylan2 286 . . . 4  |-  ( ( A  <_  B  /\  ( B  <_  C  /\  C  <_  A ) )  ->  A  =  B )
873impb 1223 . . 3  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  ->  A  =  B )
92, 3, 1letri 8254 . . . . . 6  |-  ( ( C  <_  A  /\  A  <_  B )  ->  C  <_  B )
101, 2letri3i 8245 . . . . . . 7  |-  ( B  =  C  <->  ( B  <_  C  /\  C  <_  B ) )
1110biimpri 133 . . . . . 6  |-  ( ( B  <_  C  /\  C  <_  B )  ->  B  =  C )
129, 11sylan2 286 . . . . 5  |-  ( ( B  <_  C  /\  ( C  <_  A  /\  A  <_  B ) )  ->  B  =  C )
13123impb 1223 . . . 4  |-  ( ( B  <_  C  /\  C  <_  A  /\  A  <_  B )  ->  B  =  C )
14133comr 1235 . . 3  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  ->  B  =  C )
153, 1, 2letri 8254 . . . . 5  |-  ( ( A  <_  B  /\  B  <_  C )  ->  A  <_  C )
163, 2letri3i 8245 . . . . . . 7  |-  ( A  =  C  <->  ( A  <_  C  /\  C  <_  A ) )
1716biimpri 133 . . . . . 6  |-  ( ( A  <_  C  /\  C  <_  A )  ->  A  =  C )
1817eqcomd 2235 . . . . 5  |-  ( ( A  <_  C  /\  C  <_  A )  ->  C  =  A )
1915, 18sylan 283 . . . 4  |-  ( ( ( A  <_  B  /\  B  <_  C )  /\  C  <_  A
)  ->  C  =  A )
20193impa 1218 . . 3  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  ->  C  =  A )
218, 14, 203jca 1201 . 2  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  ->  ( A  =  B  /\  B  =  C  /\  C  =  A )
)
223eqlei 8240 . . 3  |-  ( A  =  B  ->  A  <_  B )
231eqlei 8240 . . 3  |-  ( B  =  C  ->  B  <_  C )
242eqlei 8240 . . 3  |-  ( C  =  A  ->  C  <_  A )
2522, 23, 243anim123i 1208 . 2  |-  ( ( A  =  B  /\  B  =  C  /\  C  =  A )  ->  ( A  <_  B  /\  B  <_  C  /\  C  <_  A ) )
2621, 25impbii 126 1  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  <->  ( A  =  B  /\  B  =  C  /\  C  =  A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083   RRcr 7998    <_ cle 8182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-apti 8114
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator