Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > le2tri3i | Unicode version |
Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.) |
Ref | Expression |
---|---|
lt.1 | |
lt.2 | |
lt.3 |
Ref | Expression |
---|---|
le2tri3i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.2 | . . . . . 6 | |
2 | lt.3 | . . . . . 6 | |
3 | lt.1 | . . . . . 6 | |
4 | 1, 2, 3 | letri 8027 | . . . . 5 |
5 | 3, 1 | letri3i 8018 | . . . . . 6 |
6 | 5 | biimpri 132 | . . . . 5 |
7 | 4, 6 | sylan2 284 | . . . 4 |
8 | 7 | 3impb 1194 | . . 3 |
9 | 2, 3, 1 | letri 8027 | . . . . . 6 |
10 | 1, 2 | letri3i 8018 | . . . . . . 7 |
11 | 10 | biimpri 132 | . . . . . 6 |
12 | 9, 11 | sylan2 284 | . . . . 5 |
13 | 12 | 3impb 1194 | . . . 4 |
14 | 13 | 3comr 1206 | . . 3 |
15 | 3, 1, 2 | letri 8027 | . . . . 5 |
16 | 3, 2 | letri3i 8018 | . . . . . . 7 |
17 | 16 | biimpri 132 | . . . . . 6 |
18 | 17 | eqcomd 2176 | . . . . 5 |
19 | 15, 18 | sylan 281 | . . . 4 |
20 | 19 | 3impa 1189 | . . 3 |
21 | 8, 14, 20 | 3jca 1172 | . 2 |
22 | 3 | eqlei 8013 | . . 3 |
23 | 1 | eqlei 8013 | . . 3 |
24 | 2 | eqlei 8013 | . . 3 |
25 | 22, 23, 24 | 3anim123i 1179 | . 2 |
26 | 21, 25 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 class class class wbr 3989 cr 7773 cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-apti 7889 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |