| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > le2tri3i | Unicode version | ||
| Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.) |
| Ref | Expression |
|---|---|
| lt.1 |
|
| lt.2 |
|
| lt.3 |
|
| Ref | Expression |
|---|---|
| le2tri3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.2 |
. . . . . 6
| |
| 2 | lt.3 |
. . . . . 6
| |
| 3 | lt.1 |
. . . . . 6
| |
| 4 | 1, 2, 3 | letri 8215 |
. . . . 5
|
| 5 | 3, 1 | letri3i 8206 |
. . . . . 6
|
| 6 | 5 | biimpri 133 |
. . . . 5
|
| 7 | 4, 6 | sylan2 286 |
. . . 4
|
| 8 | 7 | 3impb 1202 |
. . 3
|
| 9 | 2, 3, 1 | letri 8215 |
. . . . . 6
|
| 10 | 1, 2 | letri3i 8206 |
. . . . . . 7
|
| 11 | 10 | biimpri 133 |
. . . . . 6
|
| 12 | 9, 11 | sylan2 286 |
. . . . 5
|
| 13 | 12 | 3impb 1202 |
. . . 4
|
| 14 | 13 | 3comr 1214 |
. . 3
|
| 15 | 3, 1, 2 | letri 8215 |
. . . . 5
|
| 16 | 3, 2 | letri3i 8206 |
. . . . . . 7
|
| 17 | 16 | biimpri 133 |
. . . . . 6
|
| 18 | 17 | eqcomd 2213 |
. . . . 5
|
| 19 | 15, 18 | sylan 283 |
. . . 4
|
| 20 | 19 | 3impa 1197 |
. . 3
|
| 21 | 8, 14, 20 | 3jca 1180 |
. 2
|
| 22 | 3 | eqlei 8201 |
. . 3
|
| 23 | 1 | eqlei 8201 |
. . 3
|
| 24 | 2 | eqlei 8201 |
. . 3
|
| 25 | 22, 23, 24 | 3anim123i 1187 |
. 2
|
| 26 | 21, 25 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-apti 8075 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |