ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le2tri3i Unicode version

Theorem le2tri3i 8128
Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
lt.3  |-  C  e.  RR
Assertion
Ref Expression
le2tri3i  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  <->  ( A  =  B  /\  B  =  C  /\  C  =  A ) )

Proof of Theorem le2tri3i
StepHypRef Expression
1 lt.2 . . . . . 6  |-  B  e.  RR
2 lt.3 . . . . . 6  |-  C  e.  RR
3 lt.1 . . . . . 6  |-  A  e.  RR
41, 2, 3letri 8127 . . . . 5  |-  ( ( B  <_  C  /\  C  <_  A )  ->  B  <_  A )
53, 1letri3i 8118 . . . . . 6  |-  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) )
65biimpri 133 . . . . 5  |-  ( ( A  <_  B  /\  B  <_  A )  ->  A  =  B )
74, 6sylan2 286 . . . 4  |-  ( ( A  <_  B  /\  ( B  <_  C  /\  C  <_  A ) )  ->  A  =  B )
873impb 1201 . . 3  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  ->  A  =  B )
92, 3, 1letri 8127 . . . . . 6  |-  ( ( C  <_  A  /\  A  <_  B )  ->  C  <_  B )
101, 2letri3i 8118 . . . . . . 7  |-  ( B  =  C  <->  ( B  <_  C  /\  C  <_  B ) )
1110biimpri 133 . . . . . 6  |-  ( ( B  <_  C  /\  C  <_  B )  ->  B  =  C )
129, 11sylan2 286 . . . . 5  |-  ( ( B  <_  C  /\  ( C  <_  A  /\  A  <_  B ) )  ->  B  =  C )
13123impb 1201 . . . 4  |-  ( ( B  <_  C  /\  C  <_  A  /\  A  <_  B )  ->  B  =  C )
14133comr 1213 . . 3  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  ->  B  =  C )
153, 1, 2letri 8127 . . . . 5  |-  ( ( A  <_  B  /\  B  <_  C )  ->  A  <_  C )
163, 2letri3i 8118 . . . . . . 7  |-  ( A  =  C  <->  ( A  <_  C  /\  C  <_  A ) )
1716biimpri 133 . . . . . 6  |-  ( ( A  <_  C  /\  C  <_  A )  ->  A  =  C )
1817eqcomd 2199 . . . . 5  |-  ( ( A  <_  C  /\  C  <_  A )  ->  C  =  A )
1915, 18sylan 283 . . . 4  |-  ( ( ( A  <_  B  /\  B  <_  C )  /\  C  <_  A
)  ->  C  =  A )
20193impa 1196 . . 3  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  ->  C  =  A )
218, 14, 203jca 1179 . 2  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  ->  ( A  =  B  /\  B  =  C  /\  C  =  A )
)
223eqlei 8113 . . 3  |-  ( A  =  B  ->  A  <_  B )
231eqlei 8113 . . 3  |-  ( B  =  C  ->  B  <_  C )
242eqlei 8113 . . 3  |-  ( C  =  A  ->  C  <_  A )
2522, 23, 243anim123i 1186 . 2  |-  ( ( A  =  B  /\  B  =  C  /\  C  =  A )  ->  ( A  <_  B  /\  B  <_  C  /\  C  <_  A ) )
2621, 25impbii 126 1  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  <->  ( A  =  B  /\  B  =  C  /\  C  =  A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029   RRcr 7871    <_ cle 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator