ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le2tri3i Unicode version

Theorem le2tri3i 8216
Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
lt.3  |-  C  e.  RR
Assertion
Ref Expression
le2tri3i  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  <->  ( A  =  B  /\  B  =  C  /\  C  =  A ) )

Proof of Theorem le2tri3i
StepHypRef Expression
1 lt.2 . . . . . 6  |-  B  e.  RR
2 lt.3 . . . . . 6  |-  C  e.  RR
3 lt.1 . . . . . 6  |-  A  e.  RR
41, 2, 3letri 8215 . . . . 5  |-  ( ( B  <_  C  /\  C  <_  A )  ->  B  <_  A )
53, 1letri3i 8206 . . . . . 6  |-  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) )
65biimpri 133 . . . . 5  |-  ( ( A  <_  B  /\  B  <_  A )  ->  A  =  B )
74, 6sylan2 286 . . . 4  |-  ( ( A  <_  B  /\  ( B  <_  C  /\  C  <_  A ) )  ->  A  =  B )
873impb 1202 . . 3  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  ->  A  =  B )
92, 3, 1letri 8215 . . . . . 6  |-  ( ( C  <_  A  /\  A  <_  B )  ->  C  <_  B )
101, 2letri3i 8206 . . . . . . 7  |-  ( B  =  C  <->  ( B  <_  C  /\  C  <_  B ) )
1110biimpri 133 . . . . . 6  |-  ( ( B  <_  C  /\  C  <_  B )  ->  B  =  C )
129, 11sylan2 286 . . . . 5  |-  ( ( B  <_  C  /\  ( C  <_  A  /\  A  <_  B ) )  ->  B  =  C )
13123impb 1202 . . . 4  |-  ( ( B  <_  C  /\  C  <_  A  /\  A  <_  B )  ->  B  =  C )
14133comr 1214 . . 3  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  ->  B  =  C )
153, 1, 2letri 8215 . . . . 5  |-  ( ( A  <_  B  /\  B  <_  C )  ->  A  <_  C )
163, 2letri3i 8206 . . . . . . 7  |-  ( A  =  C  <->  ( A  <_  C  /\  C  <_  A ) )
1716biimpri 133 . . . . . 6  |-  ( ( A  <_  C  /\  C  <_  A )  ->  A  =  C )
1817eqcomd 2213 . . . . 5  |-  ( ( A  <_  C  /\  C  <_  A )  ->  C  =  A )
1915, 18sylan 283 . . . 4  |-  ( ( ( A  <_  B  /\  B  <_  C )  /\  C  <_  A
)  ->  C  =  A )
20193impa 1197 . . 3  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  ->  C  =  A )
218, 14, 203jca 1180 . 2  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  ->  ( A  =  B  /\  B  =  C  /\  C  =  A )
)
223eqlei 8201 . . 3  |-  ( A  =  B  ->  A  <_  B )
231eqlei 8201 . . 3  |-  ( B  =  C  ->  B  <_  C )
242eqlei 8201 . . 3  |-  ( C  =  A  ->  C  <_  A )
2522, 23, 243anim123i 1187 . 2  |-  ( ( A  =  B  /\  B  =  C  /\  C  =  A )  ->  ( A  <_  B  /\  B  <_  C  /\  C  <_  A ) )
2621, 25impbii 126 1  |-  ( ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  <->  ( A  =  B  /\  B  =  C  /\  C  =  A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   class class class wbr 4059   RRcr 7959    <_ cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-apti 8075
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator