ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modmulconst Unicode version

Theorem modmulconst 11814
Description: Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.)
Assertion
Ref Expression
modmulconst  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  ( ( C  x.  A )  mod  ( C  x.  M
) )  =  ( ( C  x.  B
)  mod  ( C  x.  M ) ) ) )

Proof of Theorem modmulconst
StepHypRef Expression
1 nnz 9261 . . . . 5  |-  ( M  e.  NN  ->  M  e.  ZZ )
21adantl 277 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  M  e.  ZZ )
3 zsubcl 9283 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
433adant3 1017 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( A  -  B )  e.  ZZ )
54adantr 276 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( A  -  B )  e.  ZZ )
6 nnz 9261 . . . . . . 7  |-  ( C  e.  NN  ->  C  e.  ZZ )
7 nnne0 8936 . . . . . . 7  |-  ( C  e.  NN  ->  C  =/=  0 )
86, 7jca 306 . . . . . 6  |-  ( C  e.  NN  ->  ( C  e.  ZZ  /\  C  =/=  0 ) )
983ad2ant3 1020 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  e.  ZZ  /\  C  =/=  0 ) )
109adantr 276 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( C  e.  ZZ  /\  C  =/=  0 ) )
11 dvdscmulr 11811 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( A  -  B
)  e.  ZZ  /\  ( C  e.  ZZ  /\  C  =/=  0 ) )  ->  ( ( C  x.  M )  ||  ( C  x.  ( A  -  B )
)  <->  M  ||  ( A  -  B ) ) )
1211bicomd 141 . . . 4  |-  ( ( M  e.  ZZ  /\  ( A  -  B
)  e.  ZZ  /\  ( C  e.  ZZ  /\  C  =/=  0 ) )  ->  ( M  ||  ( A  -  B
)  <->  ( C  x.  M )  ||  ( C  x.  ( A  -  B ) ) ) )
132, 5, 10, 12syl3anc 1238 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( M  ||  ( A  -  B
)  <->  ( C  x.  M )  ||  ( C  x.  ( A  -  B ) ) ) )
14 zcn 9247 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  CC )
15 zcn 9247 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
16 nncn 8916 . . . . . . . 8  |-  ( C  e.  NN  ->  C  e.  CC )
1714, 15, 163anim123i 1184 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC ) )
18 3anrot 983 . . . . . . 7  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  <->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC ) )
1917, 18sylibr 134 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  e.  CC  /\  A  e.  CC  /\  B  e.  CC ) )
20 subdi 8332 . . . . . 6  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( C  x.  ( A  -  B ) )  =  ( ( C  x.  A )  -  ( C  x.  B )
) )
2119, 20syl 14 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  x.  ( A  -  B ) )  =  ( ( C  x.  A )  -  ( C  x.  B )
) )
2221adantr 276 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( C  x.  ( A  -  B
) )  =  ( ( C  x.  A
)  -  ( C  x.  B ) ) )
2322breq2d 4012 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( ( C  x.  M )  ||  ( C  x.  ( A  -  B )
)  <->  ( C  x.  M )  ||  (
( C  x.  A
)  -  ( C  x.  B ) ) ) )
2413, 23bitrd 188 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( M  ||  ( A  -  B
)  <->  ( C  x.  M )  ||  (
( C  x.  A
)  -  ( C  x.  B ) ) ) )
25 simpr 110 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  M  e.  NN )
26 simp1 997 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  A  e.  ZZ )
2726adantr 276 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  A  e.  ZZ )
28 simp2 998 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  B  e.  ZZ )
2928adantr 276 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  B  e.  ZZ )
30 moddvds 11790 . . 3  |-  ( ( M  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  M  ||  ( A  -  B )
) )
3125, 27, 29, 30syl3anc 1238 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  M  ||  ( A  -  B ) ) )
32 simpl3 1002 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  C  e.  NN )
3332, 25nnmulcld 8957 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( C  x.  M )  e.  NN )
3463ad2ant3 1020 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  C  e.  ZZ )
3534, 26zmulcld 9370 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  x.  A )  e.  ZZ )
3635adantr 276 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( C  x.  A )  e.  ZZ )
3734, 28zmulcld 9370 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  x.  B )  e.  ZZ )
3837adantr 276 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( C  x.  B )  e.  ZZ )
39 moddvds 11790 . . 3  |-  ( ( ( C  x.  M
)  e.  NN  /\  ( C  x.  A
)  e.  ZZ  /\  ( C  x.  B
)  e.  ZZ )  ->  ( ( ( C  x.  A )  mod  ( C  x.  M ) )  =  ( ( C  x.  B )  mod  ( C  x.  M )
)  <->  ( C  x.  M )  ||  (
( C  x.  A
)  -  ( C  x.  B ) ) ) )
4033, 36, 38, 39syl3anc 1238 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( ( ( C  x.  A )  mod  ( C  x.  M ) )  =  ( ( C  x.  B )  mod  ( C  x.  M )
)  <->  ( C  x.  M )  ||  (
( C  x.  A
)  -  ( C  x.  B ) ) ) )
4124, 31, 403bitr4d 220 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  ( ( C  x.  A )  mod  ( C  x.  M
) )  =  ( ( C  x.  B
)  mod  ( C  x.  M ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4000  (class class class)co 5869   CCcc 7800   0cc0 7802    x. cmul 7807    - cmin 8118   NNcn 8908   ZZcz 9242    mod cmo 10308    || cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-q 9609  df-rp 9641  df-fl 10256  df-mod 10309  df-dvds 11779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator