ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flltdivnn0lt Unicode version

Theorem flltdivnn0lt 10524
Description: The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
flltdivnn0lt  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  ( K  <  N  ->  ( |_ `  ( K  /  L ) )  < 
( N  /  L
) ) )

Proof of Theorem flltdivnn0lt
StepHypRef Expression
1 simp1 1021 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  K  e.  NN0 )
21nn0zd 9567 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  K  e.  ZZ )
3 simp3 1023 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  L  e.  NN )
4 znq 9819 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  NN )  ->  ( K  /  L
)  e.  QQ )
54flqcld 10497 . . . . . 6  |-  ( ( K  e.  ZZ  /\  L  e.  NN )  ->  ( |_ `  ( K  /  L ) )  e.  ZZ )
62, 3, 5syl2anc 411 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  ( |_ `  ( K  /  L ) )  e.  ZZ )
76adantr 276 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( |_ `  ( K  /  L
) )  e.  ZZ )
87zred 9569 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( |_ `  ( K  /  L
) )  e.  RR )
92adantr 276 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  K  e.  ZZ )
103adantr 276 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  L  e.  NN )
11 qre 9820 . . . . 5  |-  ( ( K  /  L )  e.  QQ  ->  ( K  /  L )  e.  RR )
124, 11syl 14 . . . 4  |-  ( ( K  e.  ZZ  /\  L  e.  NN )  ->  ( K  /  L
)  e.  RR )
139, 10, 12syl2anc 411 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( K  /  L )  e.  RR )
14 simp2 1022 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  N  e.  NN0 )
1514nn0zd 9567 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  N  e.  ZZ )
1615adantr 276 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  N  e.  ZZ )
17 znq 9819 . . . . 5  |-  ( ( N  e.  ZZ  /\  L  e.  NN )  ->  ( N  /  L
)  e.  QQ )
18 qre 9820 . . . . 5  |-  ( ( N  /  L )  e.  QQ  ->  ( N  /  L )  e.  RR )
1917, 18syl 14 . . . 4  |-  ( ( N  e.  ZZ  /\  L  e.  NN )  ->  ( N  /  L
)  e.  RR )
2016, 10, 19syl2anc 411 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( N  /  L )  e.  RR )
21 fldivnn0le 10523 . . . . 5  |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  ( |_ `  ( K  /  L ) )  <_  ( K  /  L ) )
22213adant2 1040 . . . 4  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  ( |_ `  ( K  /  L ) )  <_ 
( K  /  L
) )
2322adantr 276 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( |_ `  ( K  /  L
) )  <_  ( K  /  L ) )
24 simpr 110 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  K  <  N
)
25 nn0re 9378 . . . . . . 7  |-  ( K  e.  NN0  ->  K  e.  RR )
26 nn0re 9378 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  RR )
27 nnre 9117 . . . . . . . 8  |-  ( L  e.  NN  ->  L  e.  RR )
28 nngt0 9135 . . . . . . . 8  |-  ( L  e.  NN  ->  0  <  L )
2927, 28jca 306 . . . . . . 7  |-  ( L  e.  NN  ->  ( L  e.  RR  /\  0  <  L ) )
3025, 26, 293anim123i 1208 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  ( K  e.  RR  /\  N  e.  RR  /\  ( L  e.  RR  /\  0  <  L ) ) )
3130adantr 276 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( K  e.  RR  /\  N  e.  RR  /\  ( L  e.  RR  /\  0  <  L ) ) )
32 ltdiv1 9015 . . . . 5  |-  ( ( K  e.  RR  /\  N  e.  RR  /\  ( L  e.  RR  /\  0  <  L ) )  -> 
( K  <  N  <->  ( K  /  L )  <  ( N  /  L ) ) )
3331, 32syl 14 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( K  < 
N  <->  ( K  /  L )  <  ( N  /  L ) ) )
3424, 33mpbid 147 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( K  /  L )  <  ( N  /  L ) )
358, 13, 20, 23, 34lelttrd 8271 . 2  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( |_ `  ( K  /  L
) )  <  ( N  /  L ) )
3635ex 115 1  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  ( K  <  N  ->  ( |_ `  ( K  /  L ) )  < 
( N  /  L
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   RRcr 7998   0cc0 7999    < clt 8181    <_ cle 8182    / cdiv 8819   NNcn 9110   NN0cn0 9369   ZZcz 9446   QQcq 9814   |_cfl 10488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-n0 9370  df-z 9447  df-q 9815  df-rp 9850  df-fl 10490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator