ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flltdivnn0lt Unicode version

Theorem flltdivnn0lt 10394
Description: The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
flltdivnn0lt  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  ( K  <  N  ->  ( |_ `  ( K  /  L ) )  < 
( N  /  L
) ) )

Proof of Theorem flltdivnn0lt
StepHypRef Expression
1 simp1 999 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  K  e.  NN0 )
21nn0zd 9446 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  K  e.  ZZ )
3 simp3 1001 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  L  e.  NN )
4 znq 9698 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  NN )  ->  ( K  /  L
)  e.  QQ )
54flqcld 10367 . . . . . 6  |-  ( ( K  e.  ZZ  /\  L  e.  NN )  ->  ( |_ `  ( K  /  L ) )  e.  ZZ )
62, 3, 5syl2anc 411 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  ( |_ `  ( K  /  L ) )  e.  ZZ )
76adantr 276 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( |_ `  ( K  /  L
) )  e.  ZZ )
87zred 9448 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( |_ `  ( K  /  L
) )  e.  RR )
92adantr 276 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  K  e.  ZZ )
103adantr 276 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  L  e.  NN )
11 qre 9699 . . . . 5  |-  ( ( K  /  L )  e.  QQ  ->  ( K  /  L )  e.  RR )
124, 11syl 14 . . . 4  |-  ( ( K  e.  ZZ  /\  L  e.  NN )  ->  ( K  /  L
)  e.  RR )
139, 10, 12syl2anc 411 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( K  /  L )  e.  RR )
14 simp2 1000 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  N  e.  NN0 )
1514nn0zd 9446 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  N  e.  ZZ )
1615adantr 276 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  N  e.  ZZ )
17 znq 9698 . . . . 5  |-  ( ( N  e.  ZZ  /\  L  e.  NN )  ->  ( N  /  L
)  e.  QQ )
18 qre 9699 . . . . 5  |-  ( ( N  /  L )  e.  QQ  ->  ( N  /  L )  e.  RR )
1917, 18syl 14 . . . 4  |-  ( ( N  e.  ZZ  /\  L  e.  NN )  ->  ( N  /  L
)  e.  RR )
2016, 10, 19syl2anc 411 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( N  /  L )  e.  RR )
21 fldivnn0le 10393 . . . . 5  |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  ( |_ `  ( K  /  L ) )  <_  ( K  /  L ) )
22213adant2 1018 . . . 4  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  ( |_ `  ( K  /  L ) )  <_ 
( K  /  L
) )
2322adantr 276 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( |_ `  ( K  /  L
) )  <_  ( K  /  L ) )
24 simpr 110 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  K  <  N
)
25 nn0re 9258 . . . . . . 7  |-  ( K  e.  NN0  ->  K  e.  RR )
26 nn0re 9258 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  RR )
27 nnre 8997 . . . . . . . 8  |-  ( L  e.  NN  ->  L  e.  RR )
28 nngt0 9015 . . . . . . . 8  |-  ( L  e.  NN  ->  0  <  L )
2927, 28jca 306 . . . . . . 7  |-  ( L  e.  NN  ->  ( L  e.  RR  /\  0  <  L ) )
3025, 26, 293anim123i 1186 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  ( K  e.  RR  /\  N  e.  RR  /\  ( L  e.  RR  /\  0  <  L ) ) )
3130adantr 276 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( K  e.  RR  /\  N  e.  RR  /\  ( L  e.  RR  /\  0  <  L ) ) )
32 ltdiv1 8895 . . . . 5  |-  ( ( K  e.  RR  /\  N  e.  RR  /\  ( L  e.  RR  /\  0  <  L ) )  -> 
( K  <  N  <->  ( K  /  L )  <  ( N  /  L ) ) )
3331, 32syl 14 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( K  < 
N  <->  ( K  /  L )  <  ( N  /  L ) ) )
3424, 33mpbid 147 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( K  /  L )  <  ( N  /  L ) )
358, 13, 20, 23, 34lelttrd 8151 . 2  |-  ( ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  /\  K  <  N )  ->  ( |_ `  ( K  /  L
) )  <  ( N  /  L ) )
3635ex 115 1  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  ( K  <  N  ->  ( |_ `  ( K  /  L ) )  < 
( N  /  L
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   RRcr 7878   0cc0 7879    < clt 8061    <_ cle 8062    / cdiv 8699   NNcn 8990   NN0cn0 9249   ZZcz 9326   QQcq 9693   |_cfl 10358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator