ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddivflid Unicode version

Theorem adddivflid 10262
Description: The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
adddivflid  |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  ( B  <  C  <->  ( |_ `  ( A  +  ( B  /  C ) ) )  =  A ) )

Proof of Theorem adddivflid
StepHypRef Expression
1 simp1 997 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  A  e.  ZZ )
2 nn0z 9246 . . . . . 6  |-  ( B  e.  NN0  ->  B  e.  ZZ )
3 znq 9597 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( B  /  C
)  e.  QQ )
42, 3sylan 283 . . . . 5  |-  ( ( B  e.  NN0  /\  C  e.  NN )  ->  ( B  /  C
)  e.  QQ )
543adant1 1015 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  ( B  /  C )  e.  QQ )
61, 5jca 306 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  ( A  e.  ZZ  /\  ( B  /  C )  e.  QQ ) )
7 flqbi2 10261 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  /  C
)  e.  QQ )  ->  ( ( |_
`  ( A  +  ( B  /  C
) ) )  =  A  <->  ( 0  <_ 
( B  /  C
)  /\  ( B  /  C )  <  1
) ) )
86, 7syl 14 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  (
( |_ `  ( A  +  ( B  /  C ) ) )  =  A  <->  ( 0  <_  ( B  /  C )  /\  ( B  /  C )  <  1 ) ) )
9 nn0re 9158 . . . . . . 7  |-  ( B  e.  NN0  ->  B  e.  RR )
10 nn0ge0 9174 . . . . . . 7  |-  ( B  e.  NN0  ->  0  <_  B )
119, 10jca 306 . . . . . 6  |-  ( B  e.  NN0  ->  ( B  e.  RR  /\  0  <_  B ) )
12 nnre 8899 . . . . . . 7  |-  ( C  e.  NN  ->  C  e.  RR )
13 nngt0 8917 . . . . . . 7  |-  ( C  e.  NN  ->  0  <  C )
1412, 13jca 306 . . . . . 6  |-  ( C  e.  NN  ->  ( C  e.  RR  /\  0  <  C ) )
1511, 14anim12i 338 . . . . 5  |-  ( ( B  e.  NN0  /\  C  e.  NN )  ->  ( ( B  e.  RR  /\  0  <_  B )  /\  ( C  e.  RR  /\  0  <  C ) ) )
16153adant1 1015 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  (
( B  e.  RR  /\  0  <_  B )  /\  ( C  e.  RR  /\  0  <  C ) ) )
17 divge0 8803 . . . 4  |-  ( ( ( B  e.  RR  /\  0  <_  B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  0  <_  ( B  /  C ) )
1816, 17syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  0  <_  ( B  /  C
) )
1918biantrurd 305 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  (
( B  /  C
)  <  1  <->  ( 0  <_  ( B  /  C )  /\  ( B  /  C )  <  1 ) ) )
20 nnrp 9634 . . . . 5  |-  ( C  e.  NN  ->  C  e.  RR+ )
219, 20anim12i 338 . . . 4  |-  ( ( B  e.  NN0  /\  C  e.  NN )  ->  ( B  e.  RR  /\  C  e.  RR+ )
)
22213adant1 1015 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  ( B  e.  RR  /\  C  e.  RR+ ) )
23 divlt1lt 9695 . . 3  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( ( B  /  C )  <  1  <->  B  <  C ) )
2422, 23syl 14 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  (
( B  /  C
)  <  1  <->  B  <  C ) )
258, 19, 243bitr2rd 217 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  ( B  <  C  <->  ( |_ `  ( A  +  ( B  /  C ) ) )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2146   class class class wbr 3998   ` cfv 5208  (class class class)co 5865   RRcr 7785   0cc0 7786   1c1 7787    + caddc 7789    < clt 7966    <_ cle 7967    / cdiv 8602   NNcn 8892   NN0cn0 9149   ZZcz 9226   QQcq 9592   RR+crp 9624   |_cfl 10238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-n0 9150  df-z 9227  df-q 9593  df-rp 9625  df-fl 10240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator