ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul0inf Unicode version

Theorem mul0inf 11384
Description: Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 11206 and mulap0bd 8676 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.)
Assertion
Ref Expression
mul0inf  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  0  <-> inf ( { ( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  =  0 ) )

Proof of Theorem mul0inf
StepHypRef Expression
1 mulcl 7999 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
2 0cnd 8012 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  e.  CC )
3 simpl 109 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
43abscld 11325 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  A
)  e.  RR )
5 simpr 110 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
65abscld 11325 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  B
)  e.  RR )
7 mincl 11374 . . . 4  |-  ( ( ( abs `  A
)  e.  RR  /\  ( abs `  B )  e.  RR )  -> inf ( { ( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  e.  RR )
84, 6, 7syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> inf ( { ( abs `  A ) ,  ( abs `  B ) } ,  RR ,  <  )  e.  RR )
98recnd 8048 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> inf ( { ( abs `  A ) ,  ( abs `  B ) } ,  RR ,  <  )  e.  CC )
103absge0d 11328 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  A ) )
115absge0d 11328 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  B ) )
12 0red 8020 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  e.  RR )
13 lemininf 11377 . . . . . 6  |-  ( ( 0  e.  RR  /\  ( abs `  A )  e.  RR  /\  ( abs `  B )  e.  RR )  ->  (
0  <_ inf ( {
( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  <->  ( 0  <_  ( abs `  A
)  /\  0  <_  ( abs `  B ) ) ) )
1412, 4, 6, 13syl3anc 1249 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 0  <_ inf ( { ( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  <->  ( 0  <_  ( abs `  A
)  /\  0  <_  ( abs `  B ) ) ) )
1510, 11, 14mpbir2and 946 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_ inf ( {
( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  ) )
16 ap0gt0 8659 . . . 4  |-  ( (inf ( { ( abs `  A ) ,  ( abs `  B ) } ,  RR ,  <  )  e.  RR  /\  0  <_ inf ( { ( abs `  A ) ,  ( abs `  B
) } ,  RR ,  <  ) )  -> 
(inf ( { ( abs `  A ) ,  ( abs `  B
) } ,  RR ,  <  ) #  0  <->  0  < inf ( { ( abs `  A ) ,  ( abs `  B
) } ,  RR ,  <  ) ) )
178, 15, 16syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (inf ( { ( abs `  A ) ,  ( abs `  B
) } ,  RR ,  <  ) #  0  <->  0  < inf ( { ( abs `  A ) ,  ( abs `  B
) } ,  RR ,  <  ) ) )
18 absgt0ap 11243 . . . . 5  |-  ( A  e.  CC  ->  ( A #  0  <->  0  <  ( abs `  A ) ) )
19 absgt0ap 11243 . . . . 5  |-  ( B  e.  CC  ->  ( B #  0  <->  0  <  ( abs `  B ) ) )
2018, 19bi2anan9 606 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A #  0  /\  B #  0 )  <-> 
( 0  <  ( abs `  A )  /\  0  <  ( abs `  B
) ) ) )
21 ltmininf 11378 . . . . 5  |-  ( ( 0  e.  RR  /\  ( abs `  A )  e.  RR  /\  ( abs `  B )  e.  RR )  ->  (
0  < inf ( {
( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  <->  ( 0  <  ( abs `  A
)  /\  0  <  ( abs `  B ) ) ) )
2212, 4, 6, 21syl3anc 1249 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 0  < inf ( { ( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  <->  ( 0  <  ( abs `  A
)  /\  0  <  ( abs `  B ) ) ) )
2320, 22bitr4d 191 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A #  0  /\  B #  0 )  <->  0  < inf ( {
( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  ) ) )
24 mulap0b 8674 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A #  0  /\  B #  0 )  <-> 
( A  x.  B
) #  0 ) )
2517, 23, 243bitr2rd 217 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) #  0  <-> inf ( {
( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  ) #  0 ) )
261, 2, 9, 2, 25apcon4bid 8643 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  0  <-> inf ( { ( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cpr 3619   class class class wbr 4029   ` cfv 5254  (class class class)co 5918  infcinf 7042   CCcc 7870   RRcr 7871   0cc0 7872    x. cmul 7877    < clt 8054    <_ cle 8055   # cap 8600   abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator