ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul0inf Unicode version

Theorem mul0inf 11738
Description: Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 11559 and mulap0bd 8792 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.)
Assertion
Ref Expression
mul0inf  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  0  <-> inf ( { ( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  =  0 ) )

Proof of Theorem mul0inf
StepHypRef Expression
1 mulcl 8114 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
2 0cnd 8127 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  e.  CC )
3 simpl 109 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
43abscld 11678 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  A
)  e.  RR )
5 simpr 110 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
65abscld 11678 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  B
)  e.  RR )
7 mincl 11728 . . . 4  |-  ( ( ( abs `  A
)  e.  RR  /\  ( abs `  B )  e.  RR )  -> inf ( { ( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  e.  RR )
84, 6, 7syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> inf ( { ( abs `  A ) ,  ( abs `  B ) } ,  RR ,  <  )  e.  RR )
98recnd 8163 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> inf ( { ( abs `  A ) ,  ( abs `  B ) } ,  RR ,  <  )  e.  CC )
103absge0d 11681 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  A ) )
115absge0d 11681 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  B ) )
12 0red 8135 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  e.  RR )
13 lemininf 11731 . . . . . 6  |-  ( ( 0  e.  RR  /\  ( abs `  A )  e.  RR  /\  ( abs `  B )  e.  RR )  ->  (
0  <_ inf ( {
( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  <->  ( 0  <_  ( abs `  A
)  /\  0  <_  ( abs `  B ) ) ) )
1412, 4, 6, 13syl3anc 1271 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 0  <_ inf ( { ( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  <->  ( 0  <_  ( abs `  A
)  /\  0  <_  ( abs `  B ) ) ) )
1510, 11, 14mpbir2and 950 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_ inf ( {
( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  ) )
16 ap0gt0 8775 . . . 4  |-  ( (inf ( { ( abs `  A ) ,  ( abs `  B ) } ,  RR ,  <  )  e.  RR  /\  0  <_ inf ( { ( abs `  A ) ,  ( abs `  B
) } ,  RR ,  <  ) )  -> 
(inf ( { ( abs `  A ) ,  ( abs `  B
) } ,  RR ,  <  ) #  0  <->  0  < inf ( { ( abs `  A ) ,  ( abs `  B
) } ,  RR ,  <  ) ) )
178, 15, 16syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (inf ( { ( abs `  A ) ,  ( abs `  B
) } ,  RR ,  <  ) #  0  <->  0  < inf ( { ( abs `  A ) ,  ( abs `  B
) } ,  RR ,  <  ) ) )
18 absgt0ap 11596 . . . . 5  |-  ( A  e.  CC  ->  ( A #  0  <->  0  <  ( abs `  A ) ) )
19 absgt0ap 11596 . . . . 5  |-  ( B  e.  CC  ->  ( B #  0  <->  0  <  ( abs `  B ) ) )
2018, 19bi2anan9 608 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A #  0  /\  B #  0 )  <-> 
( 0  <  ( abs `  A )  /\  0  <  ( abs `  B
) ) ) )
21 ltmininf 11732 . . . . 5  |-  ( ( 0  e.  RR  /\  ( abs `  A )  e.  RR  /\  ( abs `  B )  e.  RR )  ->  (
0  < inf ( {
( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  <->  ( 0  <  ( abs `  A
)  /\  0  <  ( abs `  B ) ) ) )
2212, 4, 6, 21syl3anc 1271 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 0  < inf ( { ( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  <->  ( 0  <  ( abs `  A
)  /\  0  <  ( abs `  B ) ) ) )
2320, 22bitr4d 191 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A #  0  /\  B #  0 )  <->  0  < inf ( {
( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  ) ) )
24 mulap0b 8790 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A #  0  /\  B #  0 )  <-> 
( A  x.  B
) #  0 ) )
2517, 23, 243bitr2rd 217 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) #  0  <-> inf ( {
( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  ) #  0 ) )
261, 2, 9, 2, 25apcon4bid 8759 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  0  <-> inf ( { ( abs `  A
) ,  ( abs `  B ) } ,  RR ,  <  )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cpr 3667   class class class wbr 4082   ` cfv 5314  (class class class)co 5994  infcinf 7138   CCcc 7985   RRcr 7986   0cc0 7987    x. cmul 7992    < clt 8169    <_ cle 8170   # cap 8716   abscabs 11494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-rp 9838  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator