Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  iooref1o Unicode version

Theorem iooref1o 15791
Description: A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.)
Hypothesis
Ref Expression
iooref1o.f  |-  F  =  ( x  e.  RR  |->  ( 1  /  (
1  +  ( exp `  x ) ) ) )
Assertion
Ref Expression
iooref1o  |-  F : RR
-1-1-onto-> ( 0 (,) 1
)

Proof of Theorem iooref1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iooref1o.f . . 3  |-  F  =  ( x  e.  RR  |->  ( 1  /  (
1  +  ( exp `  x ) ) ) )
2 1rp 9751 . . . . . . . . 9  |-  1  e.  RR+
32a1i 9 . . . . . . . 8  |-  ( x  e.  RR  ->  1  e.  RR+ )
4 rpefcl 11869 . . . . . . . 8  |-  ( x  e.  RR  ->  ( exp `  x )  e.  RR+ )
53, 4rpaddcld 9806 . . . . . . 7  |-  ( x  e.  RR  ->  (
1  +  ( exp `  x ) )  e.  RR+ )
65rpreccld 9801 . . . . . 6  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  RR+ )
76rpred 9790 . . . . 5  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  RR )
86rpgt0d 9793 . . . . 5  |-  ( x  e.  RR  ->  0  <  ( 1  /  (
1  +  ( exp `  x ) ) ) )
9 1red 8060 . . . . . . 7  |-  ( x  e.  RR  ->  1  e.  RR )
109, 4ltaddrpd 9824 . . . . . 6  |-  ( x  e.  RR  ->  1  <  ( 1  +  ( exp `  x ) ) )
115recgt1d 9805 . . . . . 6  |-  ( x  e.  RR  ->  (
1  <  ( 1  +  ( exp `  x
) )  <->  ( 1  /  ( 1  +  ( exp `  x
) ) )  <  1 ) )
1210, 11mpbid 147 . . . . 5  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  <  1 )
13 0xr 8092 . . . . . 6  |-  0  e.  RR*
14 1re 8044 . . . . . . 7  |-  1  e.  RR
1514rexri 8103 . . . . . 6  |-  1  e.  RR*
16 elioo2 10015 . . . . . 6  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  (
( 1  /  (
1  +  ( exp `  x ) ) )  e.  ( 0 (,) 1 )  <->  ( (
1  /  ( 1  +  ( exp `  x
) ) )  e.  RR  /\  0  < 
( 1  /  (
1  +  ( exp `  x ) ) )  /\  ( 1  / 
( 1  +  ( exp `  x ) ) )  <  1
) ) )
1713, 15, 16mp2an 426 . . . . 5  |-  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  e.  ( 0 (,) 1
)  <->  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  e.  RR  /\  0  < 
( 1  /  (
1  +  ( exp `  x ) ) )  /\  ( 1  / 
( 1  +  ( exp `  x ) ) )  <  1
) )
187, 8, 12, 17syl3anbrc 1183 . . . 4  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  ( 0 (,) 1
) )
1918adantl 277 . . 3  |-  ( ( T.  /\  x  e.  RR )  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  ( 0 (,) 1
) )
20 elioore 10006 . . . . . . . . . 10  |-  ( y  e.  ( 0 (,) 1 )  ->  y  e.  RR )
21 eliooord 10022 . . . . . . . . . . 11  |-  ( y  e.  ( 0 (,) 1 )  ->  (
0  <  y  /\  y  <  1 ) )
2221simpld 112 . . . . . . . . . 10  |-  ( y  e.  ( 0 (,) 1 )  ->  0  <  y )
2320, 22elrpd 9787 . . . . . . . . 9  |-  ( y  e.  ( 0 (,) 1 )  ->  y  e.  RR+ )
2423rpreccld 9801 . . . . . . . 8  |-  ( y  e.  ( 0 (,) 1 )  ->  (
1  /  y )  e.  RR+ )
2524rpred 9790 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  (
1  /  y )  e.  RR )
26 1red 8060 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  1  e.  RR )
2725, 26resubcld 8426 . . . . . 6  |-  ( y  e.  ( 0 (,) 1 )  ->  (
( 1  /  y
)  -  1 )  e.  RR )
2821simprd 114 . . . . . . . 8  |-  ( y  e.  ( 0 (,) 1 )  ->  y  <  1 )
2923reclt1d 9804 . . . . . . . 8  |-  ( y  e.  ( 0 (,) 1 )  ->  (
y  <  1  <->  1  <  ( 1  /  y ) ) )
3028, 29mpbid 147 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  1  <  ( 1  /  y
) )
3126, 25posdifd 8578 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  (
1  <  ( 1  /  y )  <->  0  <  ( ( 1  /  y
)  -  1 ) ) )
3230, 31mpbid 147 . . . . . 6  |-  ( y  e.  ( 0 (,) 1 )  ->  0  <  ( ( 1  / 
y )  -  1 ) )
3327, 32elrpd 9787 . . . . 5  |-  ( y  e.  ( 0 (,) 1 )  ->  (
( 1  /  y
)  -  1 )  e.  RR+ )
3433relogcld 15226 . . . 4  |-  ( y  e.  ( 0 (,) 1 )  ->  ( log `  ( ( 1  /  y )  - 
1 ) )  e.  RR )
3534adantl 277 . . 3  |-  ( ( T.  /\  y  e.  ( 0 (,) 1
) )  ->  ( log `  ( ( 1  /  y )  - 
1 ) )  e.  RR )
36 1cnd 8061 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  1  e.  CC )
374adantr 276 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( exp `  x
)  e.  RR+ )
3837rpcnd 9792 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( exp `  x
)  e.  CC )
3936, 38addcld 8065 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  +  ( exp `  x
) )  e.  CC )
4023adantl 277 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  y  e.  RR+ )
4140rpcnd 9792 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  y  e.  CC )
4240rpap0d 9796 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  y #  0 )
4336, 39, 41, 42divmulap2d 8870 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  /  y )  =  ( 1  +  ( exp `  x ) )  <->  1  =  ( y  x.  ( 1  +  ( exp `  x
) ) ) ) )
4424adantl 277 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  / 
y )  e.  RR+ )
4544rpcnd 9792 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  / 
y )  e.  CC )
4636, 38, 45addrsub 8416 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  +  ( exp `  x
) )  =  ( 1  /  y )  <-> 
( exp `  x
)  =  ( ( 1  /  y )  -  1 ) ) )
4733adantl 277 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  /  y )  - 
1 )  e.  RR+ )
4847reeflogd 15227 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( exp `  ( log `  ( ( 1  /  y )  - 
1 ) ) )  =  ( ( 1  /  y )  - 
1 ) )
4948eqeq2d 2208 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( exp `  x )  =  ( exp `  ( log `  ( ( 1  / 
y )  -  1 ) ) )  <->  ( exp `  x )  =  ( ( 1  /  y
)  -  1 ) ) )
50 reef11 11883 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  ( log `  ( ( 1  /  y )  -  1 ) )  e.  RR )  -> 
( ( exp `  x
)  =  ( exp `  ( log `  (
( 1  /  y
)  -  1 ) ) )  <->  x  =  ( log `  ( ( 1  /  y )  -  1 ) ) ) )
5134, 50sylan2 286 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( exp `  x )  =  ( exp `  ( log `  ( ( 1  / 
y )  -  1 ) ) )  <->  x  =  ( log `  ( ( 1  /  y )  -  1 ) ) ) )
5246, 49, 513bitr2rd 217 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  ( 1  +  ( exp `  x
) )  =  ( 1  /  y ) ) )
53 eqcom 2198 . . . . . . 7  |-  ( ( 1  +  ( exp `  x ) )  =  ( 1  /  y
)  <->  ( 1  / 
y )  =  ( 1  +  ( exp `  x ) ) )
5452, 53bitrdi 196 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  ( 1  / 
y )  =  ( 1  +  ( exp `  x ) ) ) )
555adantr 276 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  +  ( exp `  x
) )  e.  RR+ )
5655rpap0d 9796 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  +  ( exp `  x
) ) #  0 )
5736, 41, 39, 56divmulap3d 8871 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  =  y  <->  1  =  ( y  x.  ( 1  +  ( exp `  x
) ) ) ) )
5843, 54, 573bitr4d 220 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  ( 1  / 
( 1  +  ( exp `  x ) ) )  =  y ) )
59 eqcom 2198 . . . . 5  |-  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  =  y  <->  y  =  ( 1  /  ( 1  +  ( exp `  x
) ) ) )
6058, 59bitrdi 196 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  y  =  ( 1  /  ( 1  +  ( exp `  x
) ) ) ) )
6160adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  ( 0 (,) 1
) ) )  -> 
( x  =  ( log `  ( ( 1  /  y )  -  1 ) )  <-> 
y  =  ( 1  /  ( 1  +  ( exp `  x
) ) ) ) )
621, 19, 35, 61f1o2d 6132 . 2  |-  ( T. 
->  F : RR -1-1-onto-> ( 0 (,) 1
) )
6362mptru 1373 1  |-  F : RR
-1-1-onto-> ( 0 (,) 1
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   T. wtru 1365    e. wcel 2167   class class class wbr 4034    |-> cmpt 4095   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903   RR*cxr 8079    < clt 8080    - cmin 8216    / cdiv 8718   RR+crp 9747   (,)cioo 9982   expce 11826   logclog 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-pre-suploc 8019  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-ioo 9986  df-ico 9988  df-icc 9989  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-bc 10859  df-ihash 10887  df-shft 10999  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-ef 11832  df-e 11833  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-ntr 14440  df-cn 14532  df-cnp 14533  df-tx 14597  df-cncf 14915  df-limced 15000  df-dvap 15001  df-relog 15202
This theorem is referenced by:  iooreen  15792
  Copyright terms: Public domain W3C validator