Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  iooref1o Unicode version

Theorem iooref1o 16145
Description: A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.)
Hypothesis
Ref Expression
iooref1o.f  |-  F  =  ( x  e.  RR  |->  ( 1  /  (
1  +  ( exp `  x ) ) ) )
Assertion
Ref Expression
iooref1o  |-  F : RR
-1-1-onto-> ( 0 (,) 1
)

Proof of Theorem iooref1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iooref1o.f . . 3  |-  F  =  ( x  e.  RR  |->  ( 1  /  (
1  +  ( exp `  x ) ) ) )
2 1rp 9809 . . . . . . . . 9  |-  1  e.  RR+
32a1i 9 . . . . . . . 8  |-  ( x  e.  RR  ->  1  e.  RR+ )
4 rpefcl 12081 . . . . . . . 8  |-  ( x  e.  RR  ->  ( exp `  x )  e.  RR+ )
53, 4rpaddcld 9864 . . . . . . 7  |-  ( x  e.  RR  ->  (
1  +  ( exp `  x ) )  e.  RR+ )
65rpreccld 9859 . . . . . 6  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  RR+ )
76rpred 9848 . . . . 5  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  RR )
86rpgt0d 9851 . . . . 5  |-  ( x  e.  RR  ->  0  <  ( 1  /  (
1  +  ( exp `  x ) ) ) )
9 1red 8117 . . . . . . 7  |-  ( x  e.  RR  ->  1  e.  RR )
109, 4ltaddrpd 9882 . . . . . 6  |-  ( x  e.  RR  ->  1  <  ( 1  +  ( exp `  x ) ) )
115recgt1d 9863 . . . . . 6  |-  ( x  e.  RR  ->  (
1  <  ( 1  +  ( exp `  x
) )  <->  ( 1  /  ( 1  +  ( exp `  x
) ) )  <  1 ) )
1210, 11mpbid 147 . . . . 5  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  <  1 )
13 0xr 8149 . . . . . 6  |-  0  e.  RR*
14 1re 8101 . . . . . . 7  |-  1  e.  RR
1514rexri 8160 . . . . . 6  |-  1  e.  RR*
16 elioo2 10073 . . . . . 6  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  (
( 1  /  (
1  +  ( exp `  x ) ) )  e.  ( 0 (,) 1 )  <->  ( (
1  /  ( 1  +  ( exp `  x
) ) )  e.  RR  /\  0  < 
( 1  /  (
1  +  ( exp `  x ) ) )  /\  ( 1  / 
( 1  +  ( exp `  x ) ) )  <  1
) ) )
1713, 15, 16mp2an 426 . . . . 5  |-  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  e.  ( 0 (,) 1
)  <->  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  e.  RR  /\  0  < 
( 1  /  (
1  +  ( exp `  x ) ) )  /\  ( 1  / 
( 1  +  ( exp `  x ) ) )  <  1
) )
187, 8, 12, 17syl3anbrc 1184 . . . 4  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  ( 0 (,) 1
) )
1918adantl 277 . . 3  |-  ( ( T.  /\  x  e.  RR )  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  ( 0 (,) 1
) )
20 elioore 10064 . . . . . . . . . 10  |-  ( y  e.  ( 0 (,) 1 )  ->  y  e.  RR )
21 eliooord 10080 . . . . . . . . . . 11  |-  ( y  e.  ( 0 (,) 1 )  ->  (
0  <  y  /\  y  <  1 ) )
2221simpld 112 . . . . . . . . . 10  |-  ( y  e.  ( 0 (,) 1 )  ->  0  <  y )
2320, 22elrpd 9845 . . . . . . . . 9  |-  ( y  e.  ( 0 (,) 1 )  ->  y  e.  RR+ )
2423rpreccld 9859 . . . . . . . 8  |-  ( y  e.  ( 0 (,) 1 )  ->  (
1  /  y )  e.  RR+ )
2524rpred 9848 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  (
1  /  y )  e.  RR )
26 1red 8117 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  1  e.  RR )
2725, 26resubcld 8483 . . . . . 6  |-  ( y  e.  ( 0 (,) 1 )  ->  (
( 1  /  y
)  -  1 )  e.  RR )
2821simprd 114 . . . . . . . 8  |-  ( y  e.  ( 0 (,) 1 )  ->  y  <  1 )
2923reclt1d 9862 . . . . . . . 8  |-  ( y  e.  ( 0 (,) 1 )  ->  (
y  <  1  <->  1  <  ( 1  /  y ) ) )
3028, 29mpbid 147 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  1  <  ( 1  /  y
) )
3126, 25posdifd 8635 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  (
1  <  ( 1  /  y )  <->  0  <  ( ( 1  /  y
)  -  1 ) ) )
3230, 31mpbid 147 . . . . . 6  |-  ( y  e.  ( 0 (,) 1 )  ->  0  <  ( ( 1  / 
y )  -  1 ) )
3327, 32elrpd 9845 . . . . 5  |-  ( y  e.  ( 0 (,) 1 )  ->  (
( 1  /  y
)  -  1 )  e.  RR+ )
3433relogcld 15439 . . . 4  |-  ( y  e.  ( 0 (,) 1 )  ->  ( log `  ( ( 1  /  y )  - 
1 ) )  e.  RR )
3534adantl 277 . . 3  |-  ( ( T.  /\  y  e.  ( 0 (,) 1
) )  ->  ( log `  ( ( 1  /  y )  - 
1 ) )  e.  RR )
36 1cnd 8118 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  1  e.  CC )
374adantr 276 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( exp `  x
)  e.  RR+ )
3837rpcnd 9850 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( exp `  x
)  e.  CC )
3936, 38addcld 8122 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  +  ( exp `  x
) )  e.  CC )
4023adantl 277 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  y  e.  RR+ )
4140rpcnd 9850 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  y  e.  CC )
4240rpap0d 9854 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  y #  0 )
4336, 39, 41, 42divmulap2d 8927 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  /  y )  =  ( 1  +  ( exp `  x ) )  <->  1  =  ( y  x.  ( 1  +  ( exp `  x
) ) ) ) )
4424adantl 277 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  / 
y )  e.  RR+ )
4544rpcnd 9850 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  / 
y )  e.  CC )
4636, 38, 45addrsub 8473 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  +  ( exp `  x
) )  =  ( 1  /  y )  <-> 
( exp `  x
)  =  ( ( 1  /  y )  -  1 ) ) )
4733adantl 277 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  /  y )  - 
1 )  e.  RR+ )
4847reeflogd 15440 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( exp `  ( log `  ( ( 1  /  y )  - 
1 ) ) )  =  ( ( 1  /  y )  - 
1 ) )
4948eqeq2d 2218 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( exp `  x )  =  ( exp `  ( log `  ( ( 1  / 
y )  -  1 ) ) )  <->  ( exp `  x )  =  ( ( 1  /  y
)  -  1 ) ) )
50 reef11 12095 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  ( log `  ( ( 1  /  y )  -  1 ) )  e.  RR )  -> 
( ( exp `  x
)  =  ( exp `  ( log `  (
( 1  /  y
)  -  1 ) ) )  <->  x  =  ( log `  ( ( 1  /  y )  -  1 ) ) ) )
5134, 50sylan2 286 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( exp `  x )  =  ( exp `  ( log `  ( ( 1  / 
y )  -  1 ) ) )  <->  x  =  ( log `  ( ( 1  /  y )  -  1 ) ) ) )
5246, 49, 513bitr2rd 217 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  ( 1  +  ( exp `  x
) )  =  ( 1  /  y ) ) )
53 eqcom 2208 . . . . . . 7  |-  ( ( 1  +  ( exp `  x ) )  =  ( 1  /  y
)  <->  ( 1  / 
y )  =  ( 1  +  ( exp `  x ) ) )
5452, 53bitrdi 196 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  ( 1  / 
y )  =  ( 1  +  ( exp `  x ) ) ) )
555adantr 276 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  +  ( exp `  x
) )  e.  RR+ )
5655rpap0d 9854 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  +  ( exp `  x
) ) #  0 )
5736, 41, 39, 56divmulap3d 8928 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  =  y  <->  1  =  ( y  x.  ( 1  +  ( exp `  x
) ) ) ) )
5843, 54, 573bitr4d 220 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  ( 1  / 
( 1  +  ( exp `  x ) ) )  =  y ) )
59 eqcom 2208 . . . . 5  |-  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  =  y  <->  y  =  ( 1  /  ( 1  +  ( exp `  x
) ) ) )
6058, 59bitrdi 196 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  y  =  ( 1  /  ( 1  +  ( exp `  x
) ) ) ) )
6160adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  ( 0 (,) 1
) ) )  -> 
( x  =  ( log `  ( ( 1  /  y )  -  1 ) )  <-> 
y  =  ( 1  /  ( 1  +  ( exp `  x
) ) ) ) )
621, 19, 35, 61f1o2d 6169 . 2  |-  ( T. 
->  F : RR -1-1-onto-> ( 0 (,) 1
) )
6362mptru 1382 1  |-  F : RR
-1-1-onto-> ( 0 (,) 1
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   T. wtru 1374    e. wcel 2177   class class class wbr 4054    |-> cmpt 4116   -1-1-onto->wf1o 5284   ` cfv 5285  (class class class)co 5962   RRcr 7954   0cc0 7955   1c1 7956    + caddc 7958    x. cmul 7960   RR*cxr 8136    < clt 8137    - cmin 8273    / cdiv 8775   RR+crp 9805   (,)cioo 10040   expce 12038   logclog 15413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075  ax-pre-suploc 8076  ax-addf 8077  ax-mulf 8078
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-disj 4031  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-of 6176  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-frec 6495  df-1o 6520  df-oadd 6524  df-er 6638  df-map 6755  df-pm 6756  df-en 6846  df-dom 6847  df-fin 6848  df-sup 7107  df-inf 7108  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-xneg 9924  df-xadd 9925  df-ioo 10044  df-ico 10046  df-icc 10047  df-fz 10161  df-fzo 10295  df-seqfrec 10625  df-exp 10716  df-fac 10903  df-bc 10925  df-ihash 10953  df-shft 11211  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-clim 11675  df-sumdc 11750  df-ef 12044  df-e 12045  df-rest 13158  df-topgen 13177  df-psmet 14390  df-xmet 14391  df-met 14392  df-bl 14393  df-mopn 14394  df-top 14555  df-topon 14568  df-bases 14600  df-ntr 14653  df-cn 14745  df-cnp 14746  df-tx 14810  df-cncf 15128  df-limced 15213  df-dvap 15214  df-relog 15415
This theorem is referenced by:  iooreen  16146
  Copyright terms: Public domain W3C validator