| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > iooref1o | Unicode version | ||
| Description: A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.) |
| Ref | Expression |
|---|---|
| iooref1o.f |
|
| Ref | Expression |
|---|---|
| iooref1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooref1o.f |
. . 3
| |
| 2 | 1rp 9809 |
. . . . . . . . 9
| |
| 3 | 2 | a1i 9 |
. . . . . . . 8
|
| 4 | rpefcl 12081 |
. . . . . . . 8
| |
| 5 | 3, 4 | rpaddcld 9864 |
. . . . . . 7
|
| 6 | 5 | rpreccld 9859 |
. . . . . 6
|
| 7 | 6 | rpred 9848 |
. . . . 5
|
| 8 | 6 | rpgt0d 9851 |
. . . . 5
|
| 9 | 1red 8117 |
. . . . . . 7
| |
| 10 | 9, 4 | ltaddrpd 9882 |
. . . . . 6
|
| 11 | 5 | recgt1d 9863 |
. . . . . 6
|
| 12 | 10, 11 | mpbid 147 |
. . . . 5
|
| 13 | 0xr 8149 |
. . . . . 6
| |
| 14 | 1re 8101 |
. . . . . . 7
| |
| 15 | 14 | rexri 8160 |
. . . . . 6
|
| 16 | elioo2 10073 |
. . . . . 6
| |
| 17 | 13, 15, 16 | mp2an 426 |
. . . . 5
|
| 18 | 7, 8, 12, 17 | syl3anbrc 1184 |
. . . 4
|
| 19 | 18 | adantl 277 |
. . 3
|
| 20 | elioore 10064 |
. . . . . . . . . 10
| |
| 21 | eliooord 10080 |
. . . . . . . . . . 11
| |
| 22 | 21 | simpld 112 |
. . . . . . . . . 10
|
| 23 | 20, 22 | elrpd 9845 |
. . . . . . . . 9
|
| 24 | 23 | rpreccld 9859 |
. . . . . . . 8
|
| 25 | 24 | rpred 9848 |
. . . . . . 7
|
| 26 | 1red 8117 |
. . . . . . 7
| |
| 27 | 25, 26 | resubcld 8483 |
. . . . . 6
|
| 28 | 21 | simprd 114 |
. . . . . . . 8
|
| 29 | 23 | reclt1d 9862 |
. . . . . . . 8
|
| 30 | 28, 29 | mpbid 147 |
. . . . . . 7
|
| 31 | 26, 25 | posdifd 8635 |
. . . . . . 7
|
| 32 | 30, 31 | mpbid 147 |
. . . . . 6
|
| 33 | 27, 32 | elrpd 9845 |
. . . . 5
|
| 34 | 33 | relogcld 15439 |
. . . 4
|
| 35 | 34 | adantl 277 |
. . 3
|
| 36 | 1cnd 8118 |
. . . . . . 7
| |
| 37 | 4 | adantr 276 |
. . . . . . . . 9
|
| 38 | 37 | rpcnd 9850 |
. . . . . . . 8
|
| 39 | 36, 38 | addcld 8122 |
. . . . . . 7
|
| 40 | 23 | adantl 277 |
. . . . . . . 8
|
| 41 | 40 | rpcnd 9850 |
. . . . . . 7
|
| 42 | 40 | rpap0d 9854 |
. . . . . . 7
|
| 43 | 36, 39, 41, 42 | divmulap2d 8927 |
. . . . . 6
|
| 44 | 24 | adantl 277 |
. . . . . . . . . 10
|
| 45 | 44 | rpcnd 9850 |
. . . . . . . . 9
|
| 46 | 36, 38, 45 | addrsub 8473 |
. . . . . . . 8
|
| 47 | 33 | adantl 277 |
. . . . . . . . . 10
|
| 48 | 47 | reeflogd 15440 |
. . . . . . . . 9
|
| 49 | 48 | eqeq2d 2218 |
. . . . . . . 8
|
| 50 | reef11 12095 |
. . . . . . . . 9
| |
| 51 | 34, 50 | sylan2 286 |
. . . . . . . 8
|
| 52 | 46, 49, 51 | 3bitr2rd 217 |
. . . . . . 7
|
| 53 | eqcom 2208 |
. . . . . . 7
| |
| 54 | 52, 53 | bitrdi 196 |
. . . . . 6
|
| 55 | 5 | adantr 276 |
. . . . . . . 8
|
| 56 | 55 | rpap0d 9854 |
. . . . . . 7
|
| 57 | 36, 41, 39, 56 | divmulap3d 8928 |
. . . . . 6
|
| 58 | 43, 54, 57 | 3bitr4d 220 |
. . . . 5
|
| 59 | eqcom 2208 |
. . . . 5
| |
| 60 | 58, 59 | bitrdi 196 |
. . . 4
|
| 61 | 60 | adantl 277 |
. . 3
|
| 62 | 1, 19, 35, 61 | f1o2d 6169 |
. 2
|
| 63 | 62 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 ax-pre-suploc 8076 ax-addf 8077 ax-mulf 8078 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-disj 4031 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-of 6176 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-frec 6495 df-1o 6520 df-oadd 6524 df-er 6638 df-map 6755 df-pm 6756 df-en 6846 df-dom 6847 df-fin 6848 df-sup 7107 df-inf 7108 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-xneg 9924 df-xadd 9925 df-ioo 10044 df-ico 10046 df-icc 10047 df-fz 10161 df-fzo 10295 df-seqfrec 10625 df-exp 10716 df-fac 10903 df-bc 10925 df-ihash 10953 df-shft 11211 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-clim 11675 df-sumdc 11750 df-ef 12044 df-e 12045 df-rest 13158 df-topgen 13177 df-psmet 14390 df-xmet 14391 df-met 14392 df-bl 14393 df-mopn 14394 df-top 14555 df-topon 14568 df-bases 14600 df-ntr 14653 df-cn 14745 df-cnp 14746 df-tx 14810 df-cncf 15128 df-limced 15213 df-dvap 15214 df-relog 15415 |
| This theorem is referenced by: iooreen 16146 |
| Copyright terms: Public domain | W3C validator |