Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  iooref1o Unicode version

Theorem iooref1o 16361
Description: A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.)
Hypothesis
Ref Expression
iooref1o.f  |-  F  =  ( x  e.  RR  |->  ( 1  /  (
1  +  ( exp `  x ) ) ) )
Assertion
Ref Expression
iooref1o  |-  F : RR
-1-1-onto-> ( 0 (,) 1
)

Proof of Theorem iooref1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iooref1o.f . . 3  |-  F  =  ( x  e.  RR  |->  ( 1  /  (
1  +  ( exp `  x ) ) ) )
2 1rp 9849 . . . . . . . . 9  |-  1  e.  RR+
32a1i 9 . . . . . . . 8  |-  ( x  e.  RR  ->  1  e.  RR+ )
4 rpefcl 12191 . . . . . . . 8  |-  ( x  e.  RR  ->  ( exp `  x )  e.  RR+ )
53, 4rpaddcld 9904 . . . . . . 7  |-  ( x  e.  RR  ->  (
1  +  ( exp `  x ) )  e.  RR+ )
65rpreccld 9899 . . . . . 6  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  RR+ )
76rpred 9888 . . . . 5  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  RR )
86rpgt0d 9891 . . . . 5  |-  ( x  e.  RR  ->  0  <  ( 1  /  (
1  +  ( exp `  x ) ) ) )
9 1red 8157 . . . . . . 7  |-  ( x  e.  RR  ->  1  e.  RR )
109, 4ltaddrpd 9922 . . . . . 6  |-  ( x  e.  RR  ->  1  <  ( 1  +  ( exp `  x ) ) )
115recgt1d 9903 . . . . . 6  |-  ( x  e.  RR  ->  (
1  <  ( 1  +  ( exp `  x
) )  <->  ( 1  /  ( 1  +  ( exp `  x
) ) )  <  1 ) )
1210, 11mpbid 147 . . . . 5  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  <  1 )
13 0xr 8189 . . . . . 6  |-  0  e.  RR*
14 1re 8141 . . . . . . 7  |-  1  e.  RR
1514rexri 8200 . . . . . 6  |-  1  e.  RR*
16 elioo2 10113 . . . . . 6  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  (
( 1  /  (
1  +  ( exp `  x ) ) )  e.  ( 0 (,) 1 )  <->  ( (
1  /  ( 1  +  ( exp `  x
) ) )  e.  RR  /\  0  < 
( 1  /  (
1  +  ( exp `  x ) ) )  /\  ( 1  / 
( 1  +  ( exp `  x ) ) )  <  1
) ) )
1713, 15, 16mp2an 426 . . . . 5  |-  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  e.  ( 0 (,) 1
)  <->  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  e.  RR  /\  0  < 
( 1  /  (
1  +  ( exp `  x ) ) )  /\  ( 1  / 
( 1  +  ( exp `  x ) ) )  <  1
) )
187, 8, 12, 17syl3anbrc 1205 . . . 4  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  ( 0 (,) 1
) )
1918adantl 277 . . 3  |-  ( ( T.  /\  x  e.  RR )  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  ( 0 (,) 1
) )
20 elioore 10104 . . . . . . . . . 10  |-  ( y  e.  ( 0 (,) 1 )  ->  y  e.  RR )
21 eliooord 10120 . . . . . . . . . . 11  |-  ( y  e.  ( 0 (,) 1 )  ->  (
0  <  y  /\  y  <  1 ) )
2221simpld 112 . . . . . . . . . 10  |-  ( y  e.  ( 0 (,) 1 )  ->  0  <  y )
2320, 22elrpd 9885 . . . . . . . . 9  |-  ( y  e.  ( 0 (,) 1 )  ->  y  e.  RR+ )
2423rpreccld 9899 . . . . . . . 8  |-  ( y  e.  ( 0 (,) 1 )  ->  (
1  /  y )  e.  RR+ )
2524rpred 9888 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  (
1  /  y )  e.  RR )
26 1red 8157 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  1  e.  RR )
2725, 26resubcld 8523 . . . . . 6  |-  ( y  e.  ( 0 (,) 1 )  ->  (
( 1  /  y
)  -  1 )  e.  RR )
2821simprd 114 . . . . . . . 8  |-  ( y  e.  ( 0 (,) 1 )  ->  y  <  1 )
2923reclt1d 9902 . . . . . . . 8  |-  ( y  e.  ( 0 (,) 1 )  ->  (
y  <  1  <->  1  <  ( 1  /  y ) ) )
3028, 29mpbid 147 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  1  <  ( 1  /  y
) )
3126, 25posdifd 8675 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  (
1  <  ( 1  /  y )  <->  0  <  ( ( 1  /  y
)  -  1 ) ) )
3230, 31mpbid 147 . . . . . 6  |-  ( y  e.  ( 0 (,) 1 )  ->  0  <  ( ( 1  / 
y )  -  1 ) )
3327, 32elrpd 9885 . . . . 5  |-  ( y  e.  ( 0 (,) 1 )  ->  (
( 1  /  y
)  -  1 )  e.  RR+ )
3433relogcld 15550 . . . 4  |-  ( y  e.  ( 0 (,) 1 )  ->  ( log `  ( ( 1  /  y )  - 
1 ) )  e.  RR )
3534adantl 277 . . 3  |-  ( ( T.  /\  y  e.  ( 0 (,) 1
) )  ->  ( log `  ( ( 1  /  y )  - 
1 ) )  e.  RR )
36 1cnd 8158 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  1  e.  CC )
374adantr 276 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( exp `  x
)  e.  RR+ )
3837rpcnd 9890 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( exp `  x
)  e.  CC )
3936, 38addcld 8162 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  +  ( exp `  x
) )  e.  CC )
4023adantl 277 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  y  e.  RR+ )
4140rpcnd 9890 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  y  e.  CC )
4240rpap0d 9894 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  y #  0 )
4336, 39, 41, 42divmulap2d 8967 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  /  y )  =  ( 1  +  ( exp `  x ) )  <->  1  =  ( y  x.  ( 1  +  ( exp `  x
) ) ) ) )
4424adantl 277 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  / 
y )  e.  RR+ )
4544rpcnd 9890 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  / 
y )  e.  CC )
4636, 38, 45addrsub 8513 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  +  ( exp `  x
) )  =  ( 1  /  y )  <-> 
( exp `  x
)  =  ( ( 1  /  y )  -  1 ) ) )
4733adantl 277 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  /  y )  - 
1 )  e.  RR+ )
4847reeflogd 15551 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( exp `  ( log `  ( ( 1  /  y )  - 
1 ) ) )  =  ( ( 1  /  y )  - 
1 ) )
4948eqeq2d 2241 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( exp `  x )  =  ( exp `  ( log `  ( ( 1  / 
y )  -  1 ) ) )  <->  ( exp `  x )  =  ( ( 1  /  y
)  -  1 ) ) )
50 reef11 12205 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  ( log `  ( ( 1  /  y )  -  1 ) )  e.  RR )  -> 
( ( exp `  x
)  =  ( exp `  ( log `  (
( 1  /  y
)  -  1 ) ) )  <->  x  =  ( log `  ( ( 1  /  y )  -  1 ) ) ) )
5134, 50sylan2 286 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( exp `  x )  =  ( exp `  ( log `  ( ( 1  / 
y )  -  1 ) ) )  <->  x  =  ( log `  ( ( 1  /  y )  -  1 ) ) ) )
5246, 49, 513bitr2rd 217 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  ( 1  +  ( exp `  x
) )  =  ( 1  /  y ) ) )
53 eqcom 2231 . . . . . . 7  |-  ( ( 1  +  ( exp `  x ) )  =  ( 1  /  y
)  <->  ( 1  / 
y )  =  ( 1  +  ( exp `  x ) ) )
5452, 53bitrdi 196 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  ( 1  / 
y )  =  ( 1  +  ( exp `  x ) ) ) )
555adantr 276 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  +  ( exp `  x
) )  e.  RR+ )
5655rpap0d 9894 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  +  ( exp `  x
) ) #  0 )
5736, 41, 39, 56divmulap3d 8968 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  =  y  <->  1  =  ( y  x.  ( 1  +  ( exp `  x
) ) ) ) )
5843, 54, 573bitr4d 220 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  ( 1  / 
( 1  +  ( exp `  x ) ) )  =  y ) )
59 eqcom 2231 . . . . 5  |-  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  =  y  <->  y  =  ( 1  /  ( 1  +  ( exp `  x
) ) ) )
6058, 59bitrdi 196 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  y  =  ( 1  /  ( 1  +  ( exp `  x
) ) ) ) )
6160adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  ( 0 (,) 1
) ) )  -> 
( x  =  ( log `  ( ( 1  /  y )  -  1 ) )  <-> 
y  =  ( 1  /  ( 1  +  ( exp `  x
) ) ) ) )
621, 19, 35, 61f1o2d 6209 . 2  |-  ( T. 
->  F : RR -1-1-onto-> ( 0 (,) 1
) )
6362mptru 1404 1  |-  F : RR
-1-1-onto-> ( 0 (,) 1
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   T. wtru 1396    e. wcel 2200   class class class wbr 4082    |-> cmpt 4144   -1-1-onto->wf1o 5316   ` cfv 5317  (class class class)co 6000   RRcr 7994   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000   RR*cxr 8176    < clt 8177    - cmin 8313    / cdiv 8815   RR+crp 9845   (,)cioo 10080   expce 12148   logclog 15524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115  ax-pre-suploc 8116  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-map 6795  df-pm 6796  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-ioo 10084  df-ico 10086  df-icc 10087  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-fac 10943  df-bc 10965  df-ihash 10993  df-shft 11321  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860  df-ef 12154  df-e 12155  df-rest 13269  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-ntr 14764  df-cn 14856  df-cnp 14857  df-tx 14921  df-cncf 15239  df-limced 15324  df-dvap 15325  df-relog 15526
This theorem is referenced by:  iooreen  16362
  Copyright terms: Public domain W3C validator