Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  iooref1o Unicode version

Theorem iooref1o 14923
Description: A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.)
Hypothesis
Ref Expression
iooref1o.f  |-  F  =  ( x  e.  RR  |->  ( 1  /  (
1  +  ( exp `  x ) ) ) )
Assertion
Ref Expression
iooref1o  |-  F : RR
-1-1-onto-> ( 0 (,) 1
)

Proof of Theorem iooref1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iooref1o.f . . 3  |-  F  =  ( x  e.  RR  |->  ( 1  /  (
1  +  ( exp `  x ) ) ) )
2 1rp 9660 . . . . . . . . 9  |-  1  e.  RR+
32a1i 9 . . . . . . . 8  |-  ( x  e.  RR  ->  1  e.  RR+ )
4 rpefcl 11696 . . . . . . . 8  |-  ( x  e.  RR  ->  ( exp `  x )  e.  RR+ )
53, 4rpaddcld 9715 . . . . . . 7  |-  ( x  e.  RR  ->  (
1  +  ( exp `  x ) )  e.  RR+ )
65rpreccld 9710 . . . . . 6  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  RR+ )
76rpred 9699 . . . . 5  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  RR )
86rpgt0d 9702 . . . . 5  |-  ( x  e.  RR  ->  0  <  ( 1  /  (
1  +  ( exp `  x ) ) ) )
9 1red 7975 . . . . . . 7  |-  ( x  e.  RR  ->  1  e.  RR )
109, 4ltaddrpd 9733 . . . . . 6  |-  ( x  e.  RR  ->  1  <  ( 1  +  ( exp `  x ) ) )
115recgt1d 9714 . . . . . 6  |-  ( x  e.  RR  ->  (
1  <  ( 1  +  ( exp `  x
) )  <->  ( 1  /  ( 1  +  ( exp `  x
) ) )  <  1 ) )
1210, 11mpbid 147 . . . . 5  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  <  1 )
13 0xr 8007 . . . . . 6  |-  0  e.  RR*
14 1re 7959 . . . . . . 7  |-  1  e.  RR
1514rexri 8018 . . . . . 6  |-  1  e.  RR*
16 elioo2 9924 . . . . . 6  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  (
( 1  /  (
1  +  ( exp `  x ) ) )  e.  ( 0 (,) 1 )  <->  ( (
1  /  ( 1  +  ( exp `  x
) ) )  e.  RR  /\  0  < 
( 1  /  (
1  +  ( exp `  x ) ) )  /\  ( 1  / 
( 1  +  ( exp `  x ) ) )  <  1
) ) )
1713, 15, 16mp2an 426 . . . . 5  |-  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  e.  ( 0 (,) 1
)  <->  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  e.  RR  /\  0  < 
( 1  /  (
1  +  ( exp `  x ) ) )  /\  ( 1  / 
( 1  +  ( exp `  x ) ) )  <  1
) )
187, 8, 12, 17syl3anbrc 1181 . . . 4  |-  ( x  e.  RR  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  ( 0 (,) 1
) )
1918adantl 277 . . 3  |-  ( ( T.  /\  x  e.  RR )  ->  (
1  /  ( 1  +  ( exp `  x
) ) )  e.  ( 0 (,) 1
) )
20 elioore 9915 . . . . . . . . . 10  |-  ( y  e.  ( 0 (,) 1 )  ->  y  e.  RR )
21 eliooord 9931 . . . . . . . . . . 11  |-  ( y  e.  ( 0 (,) 1 )  ->  (
0  <  y  /\  y  <  1 ) )
2221simpld 112 . . . . . . . . . 10  |-  ( y  e.  ( 0 (,) 1 )  ->  0  <  y )
2320, 22elrpd 9696 . . . . . . . . 9  |-  ( y  e.  ( 0 (,) 1 )  ->  y  e.  RR+ )
2423rpreccld 9710 . . . . . . . 8  |-  ( y  e.  ( 0 (,) 1 )  ->  (
1  /  y )  e.  RR+ )
2524rpred 9699 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  (
1  /  y )  e.  RR )
26 1red 7975 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  1  e.  RR )
2725, 26resubcld 8341 . . . . . 6  |-  ( y  e.  ( 0 (,) 1 )  ->  (
( 1  /  y
)  -  1 )  e.  RR )
2821simprd 114 . . . . . . . 8  |-  ( y  e.  ( 0 (,) 1 )  ->  y  <  1 )
2923reclt1d 9713 . . . . . . . 8  |-  ( y  e.  ( 0 (,) 1 )  ->  (
y  <  1  <->  1  <  ( 1  /  y ) ) )
3028, 29mpbid 147 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  1  <  ( 1  /  y
) )
3126, 25posdifd 8492 . . . . . . 7  |-  ( y  e.  ( 0 (,) 1 )  ->  (
1  <  ( 1  /  y )  <->  0  <  ( ( 1  /  y
)  -  1 ) ) )
3230, 31mpbid 147 . . . . . 6  |-  ( y  e.  ( 0 (,) 1 )  ->  0  <  ( ( 1  / 
y )  -  1 ) )
3327, 32elrpd 9696 . . . . 5  |-  ( y  e.  ( 0 (,) 1 )  ->  (
( 1  /  y
)  -  1 )  e.  RR+ )
3433relogcld 14443 . . . 4  |-  ( y  e.  ( 0 (,) 1 )  ->  ( log `  ( ( 1  /  y )  - 
1 ) )  e.  RR )
3534adantl 277 . . 3  |-  ( ( T.  /\  y  e.  ( 0 (,) 1
) )  ->  ( log `  ( ( 1  /  y )  - 
1 ) )  e.  RR )
36 1cnd 7976 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  1  e.  CC )
374adantr 276 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( exp `  x
)  e.  RR+ )
3837rpcnd 9701 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( exp `  x
)  e.  CC )
3936, 38addcld 7980 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  +  ( exp `  x
) )  e.  CC )
4023adantl 277 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  y  e.  RR+ )
4140rpcnd 9701 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  y  e.  CC )
4240rpap0d 9705 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  y #  0 )
4336, 39, 41, 42divmulap2d 8784 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  /  y )  =  ( 1  +  ( exp `  x ) )  <->  1  =  ( y  x.  ( 1  +  ( exp `  x
) ) ) ) )
4424adantl 277 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  / 
y )  e.  RR+ )
4544rpcnd 9701 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  / 
y )  e.  CC )
4636, 38, 45addrsub 8331 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  +  ( exp `  x
) )  =  ( 1  /  y )  <-> 
( exp `  x
)  =  ( ( 1  /  y )  -  1 ) ) )
4733adantl 277 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  /  y )  - 
1 )  e.  RR+ )
4847reeflogd 14444 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( exp `  ( log `  ( ( 1  /  y )  - 
1 ) ) )  =  ( ( 1  /  y )  - 
1 ) )
4948eqeq2d 2189 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( exp `  x )  =  ( exp `  ( log `  ( ( 1  / 
y )  -  1 ) ) )  <->  ( exp `  x )  =  ( ( 1  /  y
)  -  1 ) ) )
50 reef11 11710 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  ( log `  ( ( 1  /  y )  -  1 ) )  e.  RR )  -> 
( ( exp `  x
)  =  ( exp `  ( log `  (
( 1  /  y
)  -  1 ) ) )  <->  x  =  ( log `  ( ( 1  /  y )  -  1 ) ) ) )
5134, 50sylan2 286 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( exp `  x )  =  ( exp `  ( log `  ( ( 1  / 
y )  -  1 ) ) )  <->  x  =  ( log `  ( ( 1  /  y )  -  1 ) ) ) )
5246, 49, 513bitr2rd 217 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  ( 1  +  ( exp `  x
) )  =  ( 1  /  y ) ) )
53 eqcom 2179 . . . . . . 7  |-  ( ( 1  +  ( exp `  x ) )  =  ( 1  /  y
)  <->  ( 1  / 
y )  =  ( 1  +  ( exp `  x ) ) )
5452, 53bitrdi 196 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  ( 1  / 
y )  =  ( 1  +  ( exp `  x ) ) ) )
555adantr 276 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  +  ( exp `  x
) )  e.  RR+ )
5655rpap0d 9705 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( 1  +  ( exp `  x
) ) #  0 )
5736, 41, 39, 56divmulap3d 8785 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  =  y  <->  1  =  ( y  x.  ( 1  +  ( exp `  x
) ) ) ) )
5843, 54, 573bitr4d 220 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  ( 1  / 
( 1  +  ( exp `  x ) ) )  =  y ) )
59 eqcom 2179 . . . . 5  |-  ( ( 1  /  ( 1  +  ( exp `  x
) ) )  =  y  <->  y  =  ( 1  /  ( 1  +  ( exp `  x
) ) ) )
6058, 59bitrdi 196 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  ( 0 (,) 1 ) )  ->  ( x  =  ( log `  (
( 1  /  y
)  -  1 ) )  <->  y  =  ( 1  /  ( 1  +  ( exp `  x
) ) ) ) )
6160adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  ( 0 (,) 1
) ) )  -> 
( x  =  ( log `  ( ( 1  /  y )  -  1 ) )  <-> 
y  =  ( 1  /  ( 1  +  ( exp `  x
) ) ) ) )
621, 19, 35, 61f1o2d 6079 . 2  |-  ( T. 
->  F : RR -1-1-onto-> ( 0 (,) 1
) )
6362mptru 1362 1  |-  F : RR
-1-1-onto-> ( 0 (,) 1
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   T. wtru 1354    e. wcel 2148   class class class wbr 4005    |-> cmpt 4066   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5878   RRcr 7813   0cc0 7814   1c1 7815    + caddc 7817    x. cmul 7819   RR*cxr 7994    < clt 7995    - cmin 8131    / cdiv 8632   RR+crp 9656   (,)cioo 9891   expce 11653   logclog 14417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934  ax-pre-suploc 7935  ax-addf 7936  ax-mulf 7937
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-disj 3983  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-of 6086  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-map 6653  df-pm 6654  df-en 6744  df-dom 6745  df-fin 6746  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-xneg 9775  df-xadd 9776  df-ioo 9895  df-ico 9897  df-icc 9898  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-fac 10709  df-bc 10731  df-ihash 10759  df-shft 10827  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365  df-ef 11659  df-e 11660  df-rest 12696  df-topgen 12715  df-psmet 13587  df-xmet 13588  df-met 13589  df-bl 13590  df-mopn 13591  df-top 13638  df-topon 13651  df-bases 13683  df-ntr 13736  df-cn 13828  df-cnp 13829  df-tx 13893  df-cncf 14198  df-limced 14265  df-dvap 14266  df-relog 14419
This theorem is referenced by:  iooreen  14924
  Copyright terms: Public domain W3C validator