ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsubeq4 Unicode version

Theorem addsubeq4 7941
Description: Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
addsubeq4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  =  ( C  +  D )  <-> 
( C  -  A
)  =  ( B  -  D ) ) )

Proof of Theorem addsubeq4
StepHypRef Expression
1 eqcom 2117 . . 3  |-  ( ( C  -  A )  =  ( B  -  D )  <->  ( B  -  D )  =  ( C  -  A ) )
2 subcl 7925 . . . . . 6  |-  ( ( C  e.  CC  /\  A  e.  CC )  ->  ( C  -  A
)  e.  CC )
32ancoms 266 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( C  -  A
)  e.  CC )
4 subadd 7929 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  ( C  -  A )  e.  CC )  ->  (
( B  -  D
)  =  ( C  -  A )  <->  ( D  +  ( C  -  A ) )  =  B ) )
543expa 1164 . . . . . 6  |-  ( ( ( B  e.  CC  /\  D  e.  CC )  /\  ( C  -  A )  e.  CC )  ->  ( ( B  -  D )  =  ( C  -  A
)  <->  ( D  +  ( C  -  A
) )  =  B ) )
65ancoms 266 . . . . 5  |-  ( ( ( C  -  A
)  e.  CC  /\  ( B  e.  CC  /\  D  e.  CC ) )  ->  ( ( B  -  D )  =  ( C  -  A )  <->  ( D  +  ( C  -  A ) )  =  B ) )
73, 6sylan 279 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( B  -  D )  =  ( C  -  A )  <-> 
( D  +  ( C  -  A ) )  =  B ) )
87an4s 560 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( B  -  D )  =  ( C  -  A )  <-> 
( D  +  ( C  -  A ) )  =  B ) )
91, 8syl5bb 191 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  -  A )  =  ( B  -  D )  <-> 
( D  +  ( C  -  A ) )  =  B ) )
10 addcom 7863 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  =  ( D  +  C ) )
1110adantl 273 . . . . . 6  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( C  +  D )  =  ( D  +  C ) )
1211oveq1d 5755 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( C  +  D )  -  A )  =  ( ( D  +  C
)  -  A ) )
13 addsubass 7936 . . . . . . . 8  |-  ( ( D  e.  CC  /\  C  e.  CC  /\  A  e.  CC )  ->  (
( D  +  C
)  -  A )  =  ( D  +  ( C  -  A
) ) )
14133com12 1168 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  A  e.  CC )  ->  (
( D  +  C
)  -  A )  =  ( D  +  ( C  -  A
) ) )
15143expa 1164 . . . . . 6  |-  ( ( ( C  e.  CC  /\  D  e.  CC )  /\  A  e.  CC )  ->  ( ( D  +  C )  -  A )  =  ( D  +  ( C  -  A ) ) )
1615ancoms 266 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( D  +  C )  -  A )  =  ( D  +  ( C  -  A ) ) )
1712, 16eqtrd 2148 . . . 4  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( C  +  D )  -  A )  =  ( D  +  ( C  -  A ) ) )
1817adantlr 466 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  +  D )  -  A
)  =  ( D  +  ( C  -  A ) ) )
1918eqeq1d 2124 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( C  +  D )  -  A )  =  B  <-> 
( D  +  ( C  -  A ) )  =  B ) )
20 addcl 7709 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  e.  CC )
21 subadd 7929 . . . . 5  |-  ( ( ( C  +  D
)  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( ( C  +  D )  -  A
)  =  B  <->  ( A  +  B )  =  ( C  +  D ) ) )
22213expb 1165 . . . 4  |-  ( ( ( C  +  D
)  e.  CC  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  ( (
( C  +  D
)  -  A )  =  B  <->  ( A  +  B )  =  ( C  +  D ) ) )
2322ancoms 266 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  +  D )  e.  CC )  ->  ( ( ( C  +  D )  -  A )  =  B  <->  ( A  +  B )  =  ( C  +  D ) ) )
2420, 23sylan2 282 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( C  +  D )  -  A )  =  B  <-> 
( A  +  B
)  =  ( C  +  D ) ) )
259, 19, 243bitr2rd 216 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  =  ( C  +  D )  <-> 
( C  -  A
)  =  ( B  -  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463  (class class class)co 5740   CCcc 7582    + caddc 7587    - cmin 7897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-setind 4420  ax-resscn 7676  ax-1cn 7677  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-sub 7899
This theorem is referenced by:  subcan  7981  addsubeq4d  8088
  Copyright terms: Public domain W3C validator