ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsubeq4 Unicode version

Theorem addsubeq4 7945
Description: Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
addsubeq4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  =  ( C  +  D )  <-> 
( C  -  A
)  =  ( B  -  D ) ) )

Proof of Theorem addsubeq4
StepHypRef Expression
1 eqcom 2119 . . 3  |-  ( ( C  -  A )  =  ( B  -  D )  <->  ( B  -  D )  =  ( C  -  A ) )
2 subcl 7929 . . . . . 6  |-  ( ( C  e.  CC  /\  A  e.  CC )  ->  ( C  -  A
)  e.  CC )
32ancoms 266 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( C  -  A
)  e.  CC )
4 subadd 7933 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  ( C  -  A )  e.  CC )  ->  (
( B  -  D
)  =  ( C  -  A )  <->  ( D  +  ( C  -  A ) )  =  B ) )
543expa 1166 . . . . . 6  |-  ( ( ( B  e.  CC  /\  D  e.  CC )  /\  ( C  -  A )  e.  CC )  ->  ( ( B  -  D )  =  ( C  -  A
)  <->  ( D  +  ( C  -  A
) )  =  B ) )
65ancoms 266 . . . . 5  |-  ( ( ( C  -  A
)  e.  CC  /\  ( B  e.  CC  /\  D  e.  CC ) )  ->  ( ( B  -  D )  =  ( C  -  A )  <->  ( D  +  ( C  -  A ) )  =  B ) )
73, 6sylan 281 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( B  -  D )  =  ( C  -  A )  <-> 
( D  +  ( C  -  A ) )  =  B ) )
87an4s 562 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( B  -  D )  =  ( C  -  A )  <-> 
( D  +  ( C  -  A ) )  =  B ) )
91, 8syl5bb 191 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  -  A )  =  ( B  -  D )  <-> 
( D  +  ( C  -  A ) )  =  B ) )
10 addcom 7867 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  =  ( D  +  C ) )
1110adantl 275 . . . . . 6  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( C  +  D )  =  ( D  +  C ) )
1211oveq1d 5757 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( C  +  D )  -  A )  =  ( ( D  +  C
)  -  A ) )
13 addsubass 7940 . . . . . . . 8  |-  ( ( D  e.  CC  /\  C  e.  CC  /\  A  e.  CC )  ->  (
( D  +  C
)  -  A )  =  ( D  +  ( C  -  A
) ) )
14133com12 1170 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  A  e.  CC )  ->  (
( D  +  C
)  -  A )  =  ( D  +  ( C  -  A
) ) )
15143expa 1166 . . . . . 6  |-  ( ( ( C  e.  CC  /\  D  e.  CC )  /\  A  e.  CC )  ->  ( ( D  +  C )  -  A )  =  ( D  +  ( C  -  A ) ) )
1615ancoms 266 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( D  +  C )  -  A )  =  ( D  +  ( C  -  A ) ) )
1712, 16eqtrd 2150 . . . 4  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( C  +  D )  -  A )  =  ( D  +  ( C  -  A ) ) )
1817adantlr 468 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  +  D )  -  A
)  =  ( D  +  ( C  -  A ) ) )
1918eqeq1d 2126 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( C  +  D )  -  A )  =  B  <-> 
( D  +  ( C  -  A ) )  =  B ) )
20 addcl 7713 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  e.  CC )
21 subadd 7933 . . . . 5  |-  ( ( ( C  +  D
)  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( ( C  +  D )  -  A
)  =  B  <->  ( A  +  B )  =  ( C  +  D ) ) )
22213expb 1167 . . . 4  |-  ( ( ( C  +  D
)  e.  CC  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  ( (
( C  +  D
)  -  A )  =  B  <->  ( A  +  B )  =  ( C  +  D ) ) )
2322ancoms 266 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  +  D )  e.  CC )  ->  ( ( ( C  +  D )  -  A )  =  B  <->  ( A  +  B )  =  ( C  +  D ) ) )
2420, 23sylan2 284 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( C  +  D )  -  A )  =  B  <-> 
( A  +  B
)  =  ( C  +  D ) ) )
259, 19, 243bitr2rd 216 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  =  ( C  +  D )  <-> 
( C  -  A
)  =  ( B  -  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1316    e. wcel 1465  (class class class)co 5742   CCcc 7586    + caddc 7591    - cmin 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-setind 4422  ax-resscn 7680  ax-1cn 7681  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-sub 7903
This theorem is referenced by:  subcan  7985  addsubeq4d  8092
  Copyright terms: Public domain W3C validator