![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr3d | Unicode version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr3d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr3d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr3d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr3d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitr3d 190 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr3d.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: csbcomg 3103 eloprabga 6005 ereldm 6632 mapen 6902 ordiso2 7094 subcan 8274 conjmulap 8748 ltrec 8902 divelunit 10068 fseq1m1p1 10161 fzm1 10166 qsqeqor 10721 fihashneq0 10865 hashfacen 10907 cvg1nlemcau 11128 lenegsq 11239 dvdsmod 12004 bezoutlemle 12145 rpexp 12291 qnumdenbi 12330 eulerthlemh 12369 odzdvds 12383 pcelnn 12459 grpidpropdg 12957 sgrppropd 12996 mndpropd 13021 mhmpropd 13038 grppropd 13089 ghmnsgima 13338 cmnpropd 13365 qusecsub 13401 rngpropd 13451 ringpropd 13534 dvdsrpropdg 13643 resrhm2b 13745 lmodprop2d 13844 lsspropdg 13927 zndvds0 14138 bdxmet 14669 txmetcnp 14686 cnmet 14698 lgsne0 15154 lgsabs1 15155 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |