![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr3d | Unicode version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr3d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr3d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr3d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr3d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitr3d 190 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr3d.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: csbcomg 3104 eloprabga 6006 ereldm 6634 mapen 6904 ordiso2 7096 subcan 8276 conjmulap 8750 ltrec 8904 divelunit 10071 fseq1m1p1 10164 fzm1 10169 qsqeqor 10724 fihashneq0 10868 hashfacen 10910 cvg1nlemcau 11131 lenegsq 11242 dvdsmod 12007 bezoutlemle 12148 rpexp 12294 qnumdenbi 12333 eulerthlemh 12372 odzdvds 12386 pcelnn 12462 grpidpropdg 12960 sgrppropd 12999 mndpropd 13024 mhmpropd 13041 grppropd 13092 ghmnsgima 13341 cmnpropd 13368 qusecsub 13404 rngpropd 13454 ringpropd 13537 dvdsrpropdg 13646 resrhm2b 13748 lmodprop2d 13847 lsspropdg 13930 zndvds0 14149 bdxmet 14680 txmetcnp 14697 cnmet 14709 lgsne0 15195 lgsabs1 15196 gausslemma2dlem1a 15215 lgsquadlem2 15235 |
Copyright terms: Public domain | W3C validator |