| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 |
|
| 3bitr3d.2 |
|
| 3bitr3d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 |
. . 3
| |
| 2 | 3bitr3d.1 |
. . 3
| |
| 3 | 1, 2 | bitr3d 190 |
. 2
|
| 4 | 3bitr3d.3 |
. 2
| |
| 5 | 3, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: csbcomg 3120 eloprabga 6045 ereldm 6678 mapen 6958 ordiso2 7152 subcan 8347 conjmulap 8822 ltrec 8976 divelunit 10144 fseq1m1p1 10237 fzm1 10242 qsqeqor 10817 fihashneq0 10961 hashfacen 11003 ccat0 11075 cvg1nlemcau 11370 lenegsq 11481 dvdsmod 12248 bitsmod 12342 bezoutlemle 12404 rpexp 12550 qnumdenbi 12589 eulerthlemh 12628 odzdvds 12643 pcelnn 12719 grpidpropdg 13281 sgrppropd 13320 mndpropd 13347 mhmpropd 13373 grppropd 13424 ghmnsgima 13679 cmnpropd 13706 qusecsub 13742 rngpropd 13792 ringpropd 13875 dvdsrpropdg 13984 resrhm2b 14086 lmodprop2d 14185 lsspropdg 14268 zndvds0 14487 bdxmet 15048 txmetcnp 15065 cnmet 15077 lgsne0 15590 lgsabs1 15591 gausslemma2dlem1a 15610 lgsquadlem2 15630 |
| Copyright terms: Public domain | W3C validator |