| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 |
|
| 3bitr3d.2 |
|
| 3bitr3d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 |
. . 3
| |
| 2 | 3bitr3d.1 |
. . 3
| |
| 3 | 1, 2 | bitr3d 190 |
. 2
|
| 4 | 3bitr3d.3 |
. 2
| |
| 5 | 3, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: csbcomg 3147 eloprabga 6090 ereldm 6723 mapen 7003 ordiso2 7198 subcan 8397 conjmulap 8872 ltrec 9026 divelunit 10194 fseq1m1p1 10287 fzm1 10292 qsqeqor 10867 fihashneq0 11011 hashfacen 11053 ccat0 11126 cvg1nlemcau 11490 lenegsq 11601 dvdsmod 12368 bitsmod 12462 bezoutlemle 12524 rpexp 12670 qnumdenbi 12709 eulerthlemh 12748 odzdvds 12763 pcelnn 12839 grpidpropdg 13402 sgrppropd 13441 mndpropd 13468 mhmpropd 13494 grppropd 13545 ghmnsgima 13800 cmnpropd 13827 qusecsub 13863 rngpropd 13913 ringpropd 13996 dvdsrpropdg 14105 resrhm2b 14207 lmodprop2d 14306 lsspropdg 14389 zndvds0 14608 bdxmet 15169 txmetcnp 15186 cnmet 15198 lgsne0 15711 lgsabs1 15712 gausslemma2dlem1a 15731 lgsquadlem2 15751 usgredg2v 16016 |
| Copyright terms: Public domain | W3C validator |