ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muleqadd Unicode version

Theorem muleqadd 8689
Description: Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
Assertion
Ref Expression
muleqadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  ( A  +  B )  <-> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  1 ) )

Proof of Theorem muleqadd
StepHypRef Expression
1 ax-1cn 7967 . . . . 5  |-  1  e.  CC
2 mulsub 8422 . . . . . 6  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  ( B  e.  CC  /\  1  e.  CC ) )  -> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
31, 2mpanr2 438 . . . . 5  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  B  e.  CC )  ->  ( ( A  -  1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
41, 3mpanl2 435 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
51mulid1i 8023 . . . . . . 7  |-  ( 1  x.  1 )  =  1
65oveq2i 5930 . . . . . 6  |-  ( ( A  x.  B )  +  ( 1  x.  1 ) )  =  ( ( A  x.  B )  +  1 )
76a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  +  ( 1  x.  1 ) )  =  ( ( A  x.  B )  +  1 ) )
8 mulrid 8018 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
9 mulrid 8018 . . . . . 6  |-  ( B  e.  CC  ->  ( B  x.  1 )  =  B )
108, 9oveqan12d 5938 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  =  ( A  +  B ) )
117, 10oveq12d 5937 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  +  ( 1  x.  1 ) )  -  (
( A  x.  1 )  +  ( B  x.  1 ) ) )  =  ( ( ( A  x.  B
)  +  1 )  -  ( A  +  B ) ) )
12 mulcl 8001 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
13 addcl 7999 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
14 addsub 8232 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  CC  /\  1  e.  CC  /\  ( A  +  B )  e.  CC )  ->  (
( ( A  x.  B )  +  1 )  -  ( A  +  B ) )  =  ( ( ( A  x.  B )  -  ( A  +  B ) )  +  1 ) )
151, 14mp3an2 1336 . . . . 5  |-  ( ( ( A  x.  B
)  e.  CC  /\  ( A  +  B
)  e.  CC )  ->  ( ( ( A  x.  B )  +  1 )  -  ( A  +  B
) )  =  ( ( ( A  x.  B )  -  ( A  +  B )
)  +  1 ) )
1612, 13, 15syl2anc 411 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  +  1 )  -  ( A  +  B )
)  =  ( ( ( A  x.  B
)  -  ( A  +  B ) )  +  1 ) )
174, 11, 163eqtrd 2230 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  -  ( A  +  B ) )  +  1 ) )
1817eqeq1d 2202 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  =  1  <-> 
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  1 ) )
1912, 13subcld 8332 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  -  ( A  +  B )
)  e.  CC )
20 0cn 8013 . . . . 5  |-  0  e.  CC
21 addcan2 8202 . . . . 5  |-  ( ( ( ( A  x.  B )  -  ( A  +  B )
)  e.  CC  /\  0  e.  CC  /\  1  e.  CC )  ->  (
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  ( 0  +  1 )  <->  ( ( A  x.  B )  -  ( A  +  B ) )  =  0 ) )
2220, 1, 21mp3an23 1340 . . . 4  |-  ( ( ( A  x.  B
)  -  ( A  +  B ) )  e.  CC  ->  (
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  ( 0  +  1 )  <->  ( ( A  x.  B )  -  ( A  +  B ) )  =  0 ) )
2319, 22syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  x.  B )  -  ( A  +  B ) )  +  1 )  =  ( 0  +  1 )  <-> 
( ( A  x.  B )  -  ( A  +  B )
)  =  0 ) )
241addid2i 8164 . . . 4  |-  ( 0  +  1 )  =  1
2524eqeq2i 2204 . . 3  |-  ( ( ( ( A  x.  B )  -  ( A  +  B )
)  +  1 )  =  ( 0  +  1 )  <->  ( (
( A  x.  B
)  -  ( A  +  B ) )  +  1 )  =  1 )
2623, 25bitr3di 195 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  -  ( A  +  B
) )  =  0  <-> 
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  1 ) )
2712, 13subeq0ad 8342 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  -  ( A  +  B
) )  =  0  <-> 
( A  x.  B
)  =  ( A  +  B ) ) )
2818, 26, 273bitr2rd 217 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  ( A  +  B )  <-> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    - cmin 8192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-neg 8195
This theorem is referenced by:  conjmulap  8750
  Copyright terms: Public domain W3C validator