| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > muleqadd | Unicode version | ||
| Description: Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.) |
| Ref | Expression |
|---|---|
| muleqadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8088 |
. . . . 5
| |
| 2 | mulsub 8543 |
. . . . . 6
| |
| 3 | 1, 2 | mpanr2 438 |
. . . . 5
|
| 4 | 1, 3 | mpanl2 435 |
. . . 4
|
| 5 | 1 | mulridi 8144 |
. . . . . . 7
|
| 6 | 5 | oveq2i 6011 |
. . . . . 6
|
| 7 | 6 | a1i 9 |
. . . . 5
|
| 8 | mulrid 8139 |
. . . . . 6
| |
| 9 | mulrid 8139 |
. . . . . 6
| |
| 10 | 8, 9 | oveqan12d 6019 |
. . . . 5
|
| 11 | 7, 10 | oveq12d 6018 |
. . . 4
|
| 12 | mulcl 8122 |
. . . . 5
| |
| 13 | addcl 8120 |
. . . . 5
| |
| 14 | addsub 8353 |
. . . . . 6
| |
| 15 | 1, 14 | mp3an2 1359 |
. . . . 5
|
| 16 | 12, 13, 15 | syl2anc 411 |
. . . 4
|
| 17 | 4, 11, 16 | 3eqtrd 2266 |
. . 3
|
| 18 | 17 | eqeq1d 2238 |
. 2
|
| 19 | 12, 13 | subcld 8453 |
. . . 4
|
| 20 | 0cn 8134 |
. . . . 5
| |
| 21 | addcan2 8323 |
. . . . 5
| |
| 22 | 20, 1, 21 | mp3an23 1363 |
. . . 4
|
| 23 | 19, 22 | syl 14 |
. . 3
|
| 24 | 1 | addlidi 8285 |
. . . 4
|
| 25 | 24 | eqeq2i 2240 |
. . 3
|
| 26 | 23, 25 | bitr3di 195 |
. 2
|
| 27 | 12, 13 | subeq0ad 8463 |
. 2
|
| 28 | 18, 26, 27 | 3bitr2rd 217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-neg 8316 |
| This theorem is referenced by: conjmulap 8872 |
| Copyright terms: Public domain | W3C validator |