ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muleqadd Unicode version

Theorem muleqadd 8723
Description: Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
Assertion
Ref Expression
muleqadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  ( A  +  B )  <-> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  1 ) )

Proof of Theorem muleqadd
StepHypRef Expression
1 ax-1cn 8000 . . . . 5  |-  1  e.  CC
2 mulsub 8455 . . . . . 6  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  ( B  e.  CC  /\  1  e.  CC ) )  -> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
31, 2mpanr2 438 . . . . 5  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  B  e.  CC )  ->  ( ( A  -  1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
41, 3mpanl2 435 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
51mulridi 8056 . . . . . . 7  |-  ( 1  x.  1 )  =  1
65oveq2i 5945 . . . . . 6  |-  ( ( A  x.  B )  +  ( 1  x.  1 ) )  =  ( ( A  x.  B )  +  1 )
76a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  +  ( 1  x.  1 ) )  =  ( ( A  x.  B )  +  1 ) )
8 mulrid 8051 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
9 mulrid 8051 . . . . . 6  |-  ( B  e.  CC  ->  ( B  x.  1 )  =  B )
108, 9oveqan12d 5953 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  =  ( A  +  B ) )
117, 10oveq12d 5952 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  +  ( 1  x.  1 ) )  -  (
( A  x.  1 )  +  ( B  x.  1 ) ) )  =  ( ( ( A  x.  B
)  +  1 )  -  ( A  +  B ) ) )
12 mulcl 8034 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
13 addcl 8032 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
14 addsub 8265 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  CC  /\  1  e.  CC  /\  ( A  +  B )  e.  CC )  ->  (
( ( A  x.  B )  +  1 )  -  ( A  +  B ) )  =  ( ( ( A  x.  B )  -  ( A  +  B ) )  +  1 ) )
151, 14mp3an2 1337 . . . . 5  |-  ( ( ( A  x.  B
)  e.  CC  /\  ( A  +  B
)  e.  CC )  ->  ( ( ( A  x.  B )  +  1 )  -  ( A  +  B
) )  =  ( ( ( A  x.  B )  -  ( A  +  B )
)  +  1 ) )
1612, 13, 15syl2anc 411 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  +  1 )  -  ( A  +  B )
)  =  ( ( ( A  x.  B
)  -  ( A  +  B ) )  +  1 ) )
174, 11, 163eqtrd 2241 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  -  ( A  +  B ) )  +  1 ) )
1817eqeq1d 2213 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  =  1  <-> 
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  1 ) )
1912, 13subcld 8365 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  -  ( A  +  B )
)  e.  CC )
20 0cn 8046 . . . . 5  |-  0  e.  CC
21 addcan2 8235 . . . . 5  |-  ( ( ( ( A  x.  B )  -  ( A  +  B )
)  e.  CC  /\  0  e.  CC  /\  1  e.  CC )  ->  (
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  ( 0  +  1 )  <->  ( ( A  x.  B )  -  ( A  +  B ) )  =  0 ) )
2220, 1, 21mp3an23 1341 . . . 4  |-  ( ( ( A  x.  B
)  -  ( A  +  B ) )  e.  CC  ->  (
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  ( 0  +  1 )  <->  ( ( A  x.  B )  -  ( A  +  B ) )  =  0 ) )
2319, 22syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  x.  B )  -  ( A  +  B ) )  +  1 )  =  ( 0  +  1 )  <-> 
( ( A  x.  B )  -  ( A  +  B )
)  =  0 ) )
241addlidi 8197 . . . 4  |-  ( 0  +  1 )  =  1
2524eqeq2i 2215 . . 3  |-  ( ( ( ( A  x.  B )  -  ( A  +  B )
)  +  1 )  =  ( 0  +  1 )  <->  ( (
( A  x.  B
)  -  ( A  +  B ) )  +  1 )  =  1 )
2623, 25bitr3di 195 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  -  ( A  +  B
) )  =  0  <-> 
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  1 ) )
2712, 13subeq0ad 8375 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  -  ( A  +  B
) )  =  0  <-> 
( A  x.  B
)  =  ( A  +  B ) ) )
2818, 26, 273bitr2rd 217 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  ( A  +  B )  <-> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175  (class class class)co 5934   CCcc 7905   0cc0 7907   1c1 7908    + caddc 7910    x. cmul 7912    - cmin 8225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4583  ax-resscn 7999  ax-1cn 8000  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-sub 8227  df-neg 8228
This theorem is referenced by:  conjmulap  8784
  Copyright terms: Public domain W3C validator