ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muleqadd Unicode version

Theorem muleqadd 8614
Description: Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
Assertion
Ref Expression
muleqadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  ( A  +  B )  <-> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  1 ) )

Proof of Theorem muleqadd
StepHypRef Expression
1 ax-1cn 7895 . . . . 5  |-  1  e.  CC
2 mulsub 8348 . . . . . 6  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  ( B  e.  CC  /\  1  e.  CC ) )  -> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
31, 2mpanr2 438 . . . . 5  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  B  e.  CC )  ->  ( ( A  -  1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
41, 3mpanl2 435 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
51mulid1i 7950 . . . . . . 7  |-  ( 1  x.  1 )  =  1
65oveq2i 5880 . . . . . 6  |-  ( ( A  x.  B )  +  ( 1  x.  1 ) )  =  ( ( A  x.  B )  +  1 )
76a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  +  ( 1  x.  1 ) )  =  ( ( A  x.  B )  +  1 ) )
8 mulid1 7945 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
9 mulid1 7945 . . . . . 6  |-  ( B  e.  CC  ->  ( B  x.  1 )  =  B )
108, 9oveqan12d 5888 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  =  ( A  +  B ) )
117, 10oveq12d 5887 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  +  ( 1  x.  1 ) )  -  (
( A  x.  1 )  +  ( B  x.  1 ) ) )  =  ( ( ( A  x.  B
)  +  1 )  -  ( A  +  B ) ) )
12 mulcl 7929 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
13 addcl 7927 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
14 addsub 8158 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  CC  /\  1  e.  CC  /\  ( A  +  B )  e.  CC )  ->  (
( ( A  x.  B )  +  1 )  -  ( A  +  B ) )  =  ( ( ( A  x.  B )  -  ( A  +  B ) )  +  1 ) )
151, 14mp3an2 1325 . . . . 5  |-  ( ( ( A  x.  B
)  e.  CC  /\  ( A  +  B
)  e.  CC )  ->  ( ( ( A  x.  B )  +  1 )  -  ( A  +  B
) )  =  ( ( ( A  x.  B )  -  ( A  +  B )
)  +  1 ) )
1612, 13, 15syl2anc 411 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  +  1 )  -  ( A  +  B )
)  =  ( ( ( A  x.  B
)  -  ( A  +  B ) )  +  1 ) )
174, 11, 163eqtrd 2214 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  -  ( A  +  B ) )  +  1 ) )
1817eqeq1d 2186 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  =  1  <-> 
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  1 ) )
1912, 13subcld 8258 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  -  ( A  +  B )
)  e.  CC )
20 0cn 7940 . . . . 5  |-  0  e.  CC
21 addcan2 8128 . . . . 5  |-  ( ( ( ( A  x.  B )  -  ( A  +  B )
)  e.  CC  /\  0  e.  CC  /\  1  e.  CC )  ->  (
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  ( 0  +  1 )  <->  ( ( A  x.  B )  -  ( A  +  B ) )  =  0 ) )
2220, 1, 21mp3an23 1329 . . . 4  |-  ( ( ( A  x.  B
)  -  ( A  +  B ) )  e.  CC  ->  (
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  ( 0  +  1 )  <->  ( ( A  x.  B )  -  ( A  +  B ) )  =  0 ) )
2319, 22syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  x.  B )  -  ( A  +  B ) )  +  1 )  =  ( 0  +  1 )  <-> 
( ( A  x.  B )  -  ( A  +  B )
)  =  0 ) )
241addid2i 8090 . . . 4  |-  ( 0  +  1 )  =  1
2524eqeq2i 2188 . . 3  |-  ( ( ( ( A  x.  B )  -  ( A  +  B )
)  +  1 )  =  ( 0  +  1 )  <->  ( (
( A  x.  B
)  -  ( A  +  B ) )  +  1 )  =  1 )
2623, 25bitr3di 195 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  -  ( A  +  B
) )  =  0  <-> 
( ( ( A  x.  B )  -  ( A  +  B
) )  +  1 )  =  1 ) )
2712, 13subeq0ad 8268 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B )  -  ( A  +  B
) )  =  0  <-> 
( A  x.  B
)  =  ( A  +  B ) ) )
2818, 26, 273bitr2rd 217 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  ( A  +  B )  <-> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148  (class class class)co 5869   CCcc 7800   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    - cmin 8118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-setind 4533  ax-resscn 7894  ax-1cn 7895  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-sub 8120  df-neg 8121
This theorem is referenced by:  conjmulap  8675
  Copyright terms: Public domain W3C validator