Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > muleqadd | Unicode version |
Description: Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.) |
Ref | Expression |
---|---|
muleqadd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7825 | . . . . 5 | |
2 | mulsub 8276 | . . . . . 6 | |
3 | 1, 2 | mpanr2 435 | . . . . 5 |
4 | 1, 3 | mpanl2 432 | . . . 4 |
5 | 1 | mulid1i 7880 | . . . . . . 7 |
6 | 5 | oveq2i 5835 | . . . . . 6 |
7 | 6 | a1i 9 | . . . . 5 |
8 | mulid1 7875 | . . . . . 6 | |
9 | mulid1 7875 | . . . . . 6 | |
10 | 8, 9 | oveqan12d 5843 | . . . . 5 |
11 | 7, 10 | oveq12d 5842 | . . . 4 |
12 | mulcl 7859 | . . . . 5 | |
13 | addcl 7857 | . . . . 5 | |
14 | addsub 8086 | . . . . . 6 | |
15 | 1, 14 | mp3an2 1307 | . . . . 5 |
16 | 12, 13, 15 | syl2anc 409 | . . . 4 |
17 | 4, 11, 16 | 3eqtrd 2194 | . . 3 |
18 | 17 | eqeq1d 2166 | . 2 |
19 | 12, 13 | subcld 8186 | . . . 4 |
20 | 0cn 7870 | . . . . 5 | |
21 | addcan2 8056 | . . . . 5 | |
22 | 20, 1, 21 | mp3an23 1311 | . . . 4 |
23 | 19, 22 | syl 14 | . . 3 |
24 | 1 | addid2i 8018 | . . . 4 |
25 | 24 | eqeq2i 2168 | . . 3 |
26 | 23, 25 | bitr3di 194 | . 2 |
27 | 12, 13 | subeq0ad 8196 | . 2 |
28 | 18, 26, 27 | 3bitr2rd 216 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 (class class class)co 5824 cc 7730 cc0 7732 c1 7733 caddc 7735 cmul 7737 cmin 8046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-setind 4496 ax-resscn 7824 ax-1cn 7825 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-cnre 7843 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-iota 5135 df-fun 5172 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-sub 8048 df-neg 8049 |
This theorem is referenced by: conjmulap 8602 |
Copyright terms: Public domain | W3C validator |