ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzltd Unicode version

Theorem frec2uzltd 10329
Description: Less-than relation for  G (see frec2uz0d 10325). (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
frec2uzltd.b  |-  ( ph  ->  B  e.  om )
Assertion
Ref Expression
frec2uzltd  |-  ( ph  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    B( x)    G( x)

Proof of Theorem frec2uzltd
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uzltd.b . 2  |-  ( ph  ->  B  e.  om )
2 eleq2 2228 . . . . 5  |-  ( z  =  (/)  ->  ( A  e.  z  <->  A  e.  (/) ) )
3 fveq2 5481 . . . . . 6  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
43breq2d 3989 . . . . 5  |-  ( z  =  (/)  ->  ( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  (/) ) ) )
52, 4imbi12d 233 . . . 4  |-  ( z  =  (/)  ->  ( ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) )  <->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) ) )
65imbi2d 229 . . 3  |-  ( z  =  (/)  ->  ( (
ph  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( ph  ->  ( A  e.  (/)  ->  ( G `  A
)  <  ( G `  (/) ) ) ) ) )
7 eleq2 2228 . . . . 5  |-  ( z  =  y  ->  ( A  e.  z  <->  A  e.  y ) )
8 fveq2 5481 . . . . . 6  |-  ( z  =  y  ->  ( G `  z )  =  ( G `  y ) )
98breq2d 3989 . . . . 5  |-  ( z  =  y  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  y )
) )
107, 9imbi12d 233 . . . 4  |-  ( z  =  y  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) ) )
1110imbi2d 229 . . 3  |-  ( z  =  y  ->  (
( ph  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z
) ) )  <->  ( ph  ->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) ) ) )
12 eleq2 2228 . . . . 5  |-  ( z  =  suc  y  -> 
( A  e.  z  <-> 
A  e.  suc  y
) )
13 fveq2 5481 . . . . . 6  |-  ( z  =  suc  y  -> 
( G `  z
)  =  ( G `
 suc  y )
)
1413breq2d 3989 . . . . 5  |-  ( z  =  suc  y  -> 
( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
1512, 14imbi12d 233 . . . 4  |-  ( z  =  suc  y  -> 
( ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
1615imbi2d 229 . . 3  |-  ( z  =  suc  y  -> 
( ( ph  ->  ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) ) )  <-> 
( ph  ->  ( A  e.  suc  y  -> 
( G `  A
)  <  ( G `  suc  y ) ) ) ) )
17 eleq2 2228 . . . . 5  |-  ( z  =  B  ->  ( A  e.  z  <->  A  e.  B ) )
18 fveq2 5481 . . . . . 6  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
1918breq2d 3989 . . . . 5  |-  ( z  =  B  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  B )
) )
2017, 19imbi12d 233 . . . 4  |-  ( z  =  B  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B )
) ) )
2120imbi2d 229 . . 3  |-  ( z  =  B  ->  (
( ph  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z
) ) )  <->  ( ph  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) ) ) )
22 noel 3409 . . . . 5  |-  -.  A  e.  (/)
2322pm2.21i 636 . . . 4  |-  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) )
2423a1i 9 . . 3  |-  ( ph  ->  ( A  e.  (/)  ->  ( G `  A
)  <  ( G `  (/) ) ) )
25 id 19 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )
26 fveq2 5481 . . . . . . . 8  |-  ( A  =  y  ->  ( G `  A )  =  ( G `  y ) )
2726a1i 9 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  =  y  ->  ( G `  A )  =  ( G `  y ) ) )
2825, 27orim12d 776 . . . . . 6  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  (
( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
29 elsuc2g 4378 . . . . . . . . 9  |-  ( y  e.  om  ->  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) ) )
3029bicomd 140 . . . . . . . 8  |-  ( y  e.  om  ->  (
( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
3130adantr 274 . . . . . . 7  |-  ( ( y  e.  om  /\  ph )  ->  ( ( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
32 frec2uz.1 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ZZ )
3332adantl 275 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ph )  ->  C  e.  ZZ )
34 frec2uz.2 . . . . . . . . . 10  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
35 simpl 108 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ph )  ->  y  e.  om )
3633, 34, 35frec2uzsucd 10327 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  suc  y )  =  ( ( G `  y )  +  1 ) )
3736breq2d 3989 . . . . . . . 8  |-  ( ( y  e.  om  /\  ph )  ->  ( ( G `  A )  <  ( G `  suc  y )  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
38 frec2uzzd.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  om )
3938adantl 275 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ph )  ->  A  e.  om )
4033, 34, 39frec2uzuzd 10328 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  A )  e.  (
ZZ>= `  C ) )
4133, 34, 35frec2uzuzd 10328 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  y )  e.  (
ZZ>= `  C ) )
42 eluzelz 9467 . . . . . . . . . 10  |-  ( ( G `  A )  e.  ( ZZ>= `  C
)  ->  ( G `  A )  e.  ZZ )
43 eluzelz 9467 . . . . . . . . . 10  |-  ( ( G `  y )  e.  ( ZZ>= `  C
)  ->  ( G `  y )  e.  ZZ )
44 zleltp1 9238 . . . . . . . . . 10  |-  ( ( ( G `  A
)  e.  ZZ  /\  ( G `  y )  e.  ZZ )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4542, 43, 44syl2an 287 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  ( ZZ>= `  C )  /\  ( G `  y )  e.  ( ZZ>= `  C )
)  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
4640, 41, 45syl2anc 409 . . . . . . . 8  |-  ( ( y  e.  om  /\  ph )  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
4733, 34, 39frec2uzzd 10326 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  A )  e.  ZZ )
4833, 34, 35frec2uzzd 10326 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  y )  e.  ZZ )
49 zleloe 9230 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  ZZ  /\  ( G `  y )  e.  ZZ )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
5047, 48, 49syl2anc 409 . . . . . . . 8  |-  ( ( y  e.  om  /\  ph )  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( ( G `
 A )  < 
( G `  y
)  \/  ( G `
 A )  =  ( G `  y
) ) ) )
5137, 46, 503bitr2rd 216 . . . . . . 7  |-  ( ( y  e.  om  /\  ph )  ->  ( (
( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
5231, 51imbi12d 233 . . . . . 6  |-  ( ( y  e.  om  /\  ph )  ->  ( (
( A  e.  y  \/  A  =  y )  ->  ( ( G `  A )  <  ( G `  y
)  \/  ( G `
 A )  =  ( G `  y
) ) )  <->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5328, 52syl5ib 153 . . . . 5  |-  ( ( y  e.  om  /\  ph )  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y ) )  -> 
( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5453ex 114 . . . 4  |-  ( y  e.  om  ->  ( ph  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y
) )  ->  ( A  e.  suc  y  -> 
( G `  A
)  <  ( G `  suc  y ) ) ) ) )
5554a2d 26 . . 3  |-  ( y  e.  om  ->  (
( ph  ->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y
) ) )  -> 
( ph  ->  ( A  e.  suc  y  -> 
( G `  A
)  <  ( G `  suc  y ) ) ) ) )
566, 11, 16, 21, 24, 55finds 4572 . 2  |-  ( B  e.  om  ->  ( ph  ->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B )
) ) )
571, 56mpcom 36 1  |-  ( ph  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1342    e. wcel 2135   (/)c0 3405   class class class wbr 3977    |-> cmpt 4038   suc csuc 4338   omcom 4562   ` cfv 5183  (class class class)co 5837  freccfrec 6350   1c1 7746    + caddc 7748    < clt 7925    <_ cle 7926   ZZcz 9183   ZZ>=cuz 9458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-addcom 7845  ax-addass 7847  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-0id 7853  ax-rnegex 7854  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-ltadd 7861
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-iord 4339  df-on 4341  df-ilim 4342  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-recs 6265  df-frec 6351  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-inn 8850  df-n0 9107  df-z 9184  df-uz 9459
This theorem is referenced by:  frec2uzlt2d  10330  frec2uzf1od  10332  ennnfonelemex  12310  ennnfonelemnn0  12318
  Copyright terms: Public domain W3C validator