ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzltd Unicode version

Theorem frec2uzltd 10069
Description: Less-than relation for  G (see frec2uz0d 10065). (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
frec2uzltd.b  |-  ( ph  ->  B  e.  om )
Assertion
Ref Expression
frec2uzltd  |-  ( ph  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    B( x)    G( x)

Proof of Theorem frec2uzltd
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uzltd.b . 2  |-  ( ph  ->  B  e.  om )
2 eleq2 2178 . . . . 5  |-  ( z  =  (/)  ->  ( A  e.  z  <->  A  e.  (/) ) )
3 fveq2 5375 . . . . . 6  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
43breq2d 3907 . . . . 5  |-  ( z  =  (/)  ->  ( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  (/) ) ) )
52, 4imbi12d 233 . . . 4  |-  ( z  =  (/)  ->  ( ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) )  <->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) ) )
65imbi2d 229 . . 3  |-  ( z  =  (/)  ->  ( (
ph  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( ph  ->  ( A  e.  (/)  ->  ( G `  A
)  <  ( G `  (/) ) ) ) ) )
7 eleq2 2178 . . . . 5  |-  ( z  =  y  ->  ( A  e.  z  <->  A  e.  y ) )
8 fveq2 5375 . . . . . 6  |-  ( z  =  y  ->  ( G `  z )  =  ( G `  y ) )
98breq2d 3907 . . . . 5  |-  ( z  =  y  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  y )
) )
107, 9imbi12d 233 . . . 4  |-  ( z  =  y  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) ) )
1110imbi2d 229 . . 3  |-  ( z  =  y  ->  (
( ph  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z
) ) )  <->  ( ph  ->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) ) ) )
12 eleq2 2178 . . . . 5  |-  ( z  =  suc  y  -> 
( A  e.  z  <-> 
A  e.  suc  y
) )
13 fveq2 5375 . . . . . 6  |-  ( z  =  suc  y  -> 
( G `  z
)  =  ( G `
 suc  y )
)
1413breq2d 3907 . . . . 5  |-  ( z  =  suc  y  -> 
( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
1512, 14imbi12d 233 . . . 4  |-  ( z  =  suc  y  -> 
( ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
1615imbi2d 229 . . 3  |-  ( z  =  suc  y  -> 
( ( ph  ->  ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) ) )  <-> 
( ph  ->  ( A  e.  suc  y  -> 
( G `  A
)  <  ( G `  suc  y ) ) ) ) )
17 eleq2 2178 . . . . 5  |-  ( z  =  B  ->  ( A  e.  z  <->  A  e.  B ) )
18 fveq2 5375 . . . . . 6  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
1918breq2d 3907 . . . . 5  |-  ( z  =  B  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  B )
) )
2017, 19imbi12d 233 . . . 4  |-  ( z  =  B  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B )
) ) )
2120imbi2d 229 . . 3  |-  ( z  =  B  ->  (
( ph  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z
) ) )  <->  ( ph  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) ) ) )
22 noel 3333 . . . . 5  |-  -.  A  e.  (/)
2322pm2.21i 618 . . . 4  |-  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) )
2423a1i 9 . . 3  |-  ( ph  ->  ( A  e.  (/)  ->  ( G `  A
)  <  ( G `  (/) ) ) )
25 id 19 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )
26 fveq2 5375 . . . . . . . 8  |-  ( A  =  y  ->  ( G `  A )  =  ( G `  y ) )
2726a1i 9 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  =  y  ->  ( G `  A )  =  ( G `  y ) ) )
2825, 27orim12d 758 . . . . . 6  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  (
( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
29 elsuc2g 4287 . . . . . . . . 9  |-  ( y  e.  om  ->  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) ) )
3029bicomd 140 . . . . . . . 8  |-  ( y  e.  om  ->  (
( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
3130adantr 272 . . . . . . 7  |-  ( ( y  e.  om  /\  ph )  ->  ( ( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
32 frec2uz.1 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ZZ )
3332adantl 273 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ph )  ->  C  e.  ZZ )
34 frec2uz.2 . . . . . . . . . 10  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
35 simpl 108 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ph )  ->  y  e.  om )
3633, 34, 35frec2uzsucd 10067 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  suc  y )  =  ( ( G `  y )  +  1 ) )
3736breq2d 3907 . . . . . . . 8  |-  ( ( y  e.  om  /\  ph )  ->  ( ( G `  A )  <  ( G `  suc  y )  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
38 frec2uzzd.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  om )
3938adantl 273 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ph )  ->  A  e.  om )
4033, 34, 39frec2uzuzd 10068 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  A )  e.  (
ZZ>= `  C ) )
4133, 34, 35frec2uzuzd 10068 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  y )  e.  (
ZZ>= `  C ) )
42 eluzelz 9237 . . . . . . . . . 10  |-  ( ( G `  A )  e.  ( ZZ>= `  C
)  ->  ( G `  A )  e.  ZZ )
43 eluzelz 9237 . . . . . . . . . 10  |-  ( ( G `  y )  e.  ( ZZ>= `  C
)  ->  ( G `  y )  e.  ZZ )
44 zleltp1 9013 . . . . . . . . . 10  |-  ( ( ( G `  A
)  e.  ZZ  /\  ( G `  y )  e.  ZZ )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4542, 43, 44syl2an 285 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  ( ZZ>= `  C )  /\  ( G `  y )  e.  ( ZZ>= `  C )
)  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
4640, 41, 45syl2anc 406 . . . . . . . 8  |-  ( ( y  e.  om  /\  ph )  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
4733, 34, 39frec2uzzd 10066 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  A )  e.  ZZ )
4833, 34, 35frec2uzzd 10066 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  y )  e.  ZZ )
49 zleloe 9005 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  ZZ  /\  ( G `  y )  e.  ZZ )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
5047, 48, 49syl2anc 406 . . . . . . . 8  |-  ( ( y  e.  om  /\  ph )  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( ( G `
 A )  < 
( G `  y
)  \/  ( G `
 A )  =  ( G `  y
) ) ) )
5137, 46, 503bitr2rd 216 . . . . . . 7  |-  ( ( y  e.  om  /\  ph )  ->  ( (
( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
5231, 51imbi12d 233 . . . . . 6  |-  ( ( y  e.  om  /\  ph )  ->  ( (
( A  e.  y  \/  A  =  y )  ->  ( ( G `  A )  <  ( G `  y
)  \/  ( G `
 A )  =  ( G `  y
) ) )  <->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5328, 52syl5ib 153 . . . . 5  |-  ( ( y  e.  om  /\  ph )  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y ) )  -> 
( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5453ex 114 . . . 4  |-  ( y  e.  om  ->  ( ph  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y
) )  ->  ( A  e.  suc  y  -> 
( G `  A
)  <  ( G `  suc  y ) ) ) ) )
5554a2d 26 . . 3  |-  ( y  e.  om  ->  (
( ph  ->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y
) ) )  -> 
( ph  ->  ( A  e.  suc  y  -> 
( G `  A
)  <  ( G `  suc  y ) ) ) ) )
566, 11, 16, 21, 24, 55finds 4474 . 2  |-  ( B  e.  om  ->  ( ph  ->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B )
) ) )
571, 56mpcom 36 1  |-  ( ph  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680    = wceq 1314    e. wcel 1463   (/)c0 3329   class class class wbr 3895    |-> cmpt 3949   suc csuc 4247   omcom 4464   ` cfv 5081  (class class class)co 5728  freccfrec 6241   1c1 7548    + caddc 7550    < clt 7724    <_ cle 7725   ZZcz 8958   ZZ>=cuz 9228
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-recs 6156  df-frec 6242  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-n0 8882  df-z 8959  df-uz 9229
This theorem is referenced by:  frec2uzlt2d  10070  frec2uzf1od  10072  ennnfonelemex  11772  ennnfonelemnn0  11780
  Copyright terms: Public domain W3C validator