ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzltd Unicode version

Theorem frec2uzltd 10328
Description: Less-than relation for  G (see frec2uz0d 10324). (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
frec2uzltd.b  |-  ( ph  ->  B  e.  om )
Assertion
Ref Expression
frec2uzltd  |-  ( ph  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    B( x)    G( x)

Proof of Theorem frec2uzltd
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uzltd.b . 2  |-  ( ph  ->  B  e.  om )
2 eleq2 2228 . . . . 5  |-  ( z  =  (/)  ->  ( A  e.  z  <->  A  e.  (/) ) )
3 fveq2 5480 . . . . . 6  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
43breq2d 3988 . . . . 5  |-  ( z  =  (/)  ->  ( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  (/) ) ) )
52, 4imbi12d 233 . . . 4  |-  ( z  =  (/)  ->  ( ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) )  <->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) ) )
65imbi2d 229 . . 3  |-  ( z  =  (/)  ->  ( (
ph  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( ph  ->  ( A  e.  (/)  ->  ( G `  A
)  <  ( G `  (/) ) ) ) ) )
7 eleq2 2228 . . . . 5  |-  ( z  =  y  ->  ( A  e.  z  <->  A  e.  y ) )
8 fveq2 5480 . . . . . 6  |-  ( z  =  y  ->  ( G `  z )  =  ( G `  y ) )
98breq2d 3988 . . . . 5  |-  ( z  =  y  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  y )
) )
107, 9imbi12d 233 . . . 4  |-  ( z  =  y  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) ) )
1110imbi2d 229 . . 3  |-  ( z  =  y  ->  (
( ph  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z
) ) )  <->  ( ph  ->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) ) ) )
12 eleq2 2228 . . . . 5  |-  ( z  =  suc  y  -> 
( A  e.  z  <-> 
A  e.  suc  y
) )
13 fveq2 5480 . . . . . 6  |-  ( z  =  suc  y  -> 
( G `  z
)  =  ( G `
 suc  y )
)
1413breq2d 3988 . . . . 5  |-  ( z  =  suc  y  -> 
( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
1512, 14imbi12d 233 . . . 4  |-  ( z  =  suc  y  -> 
( ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
1615imbi2d 229 . . 3  |-  ( z  =  suc  y  -> 
( ( ph  ->  ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) ) )  <-> 
( ph  ->  ( A  e.  suc  y  -> 
( G `  A
)  <  ( G `  suc  y ) ) ) ) )
17 eleq2 2228 . . . . 5  |-  ( z  =  B  ->  ( A  e.  z  <->  A  e.  B ) )
18 fveq2 5480 . . . . . 6  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
1918breq2d 3988 . . . . 5  |-  ( z  =  B  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  B )
) )
2017, 19imbi12d 233 . . . 4  |-  ( z  =  B  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B )
) ) )
2120imbi2d 229 . . 3  |-  ( z  =  B  ->  (
( ph  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z
) ) )  <->  ( ph  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) ) ) )
22 noel 3408 . . . . 5  |-  -.  A  e.  (/)
2322pm2.21i 636 . . . 4  |-  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) )
2423a1i 9 . . 3  |-  ( ph  ->  ( A  e.  (/)  ->  ( G `  A
)  <  ( G `  (/) ) ) )
25 id 19 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )
26 fveq2 5480 . . . . . . . 8  |-  ( A  =  y  ->  ( G `  A )  =  ( G `  y ) )
2726a1i 9 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  =  y  ->  ( G `  A )  =  ( G `  y ) ) )
2825, 27orim12d 776 . . . . . 6  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  (
( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
29 elsuc2g 4377 . . . . . . . . 9  |-  ( y  e.  om  ->  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) ) )
3029bicomd 140 . . . . . . . 8  |-  ( y  e.  om  ->  (
( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
3130adantr 274 . . . . . . 7  |-  ( ( y  e.  om  /\  ph )  ->  ( ( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
32 frec2uz.1 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ZZ )
3332adantl 275 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ph )  ->  C  e.  ZZ )
34 frec2uz.2 . . . . . . . . . 10  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
35 simpl 108 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ph )  ->  y  e.  om )
3633, 34, 35frec2uzsucd 10326 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  suc  y )  =  ( ( G `  y )  +  1 ) )
3736breq2d 3988 . . . . . . . 8  |-  ( ( y  e.  om  /\  ph )  ->  ( ( G `  A )  <  ( G `  suc  y )  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
38 frec2uzzd.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  om )
3938adantl 275 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  ph )  ->  A  e.  om )
4033, 34, 39frec2uzuzd 10327 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  A )  e.  (
ZZ>= `  C ) )
4133, 34, 35frec2uzuzd 10327 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  y )  e.  (
ZZ>= `  C ) )
42 eluzelz 9466 . . . . . . . . . 10  |-  ( ( G `  A )  e.  ( ZZ>= `  C
)  ->  ( G `  A )  e.  ZZ )
43 eluzelz 9466 . . . . . . . . . 10  |-  ( ( G `  y )  e.  ( ZZ>= `  C
)  ->  ( G `  y )  e.  ZZ )
44 zleltp1 9237 . . . . . . . . . 10  |-  ( ( ( G `  A
)  e.  ZZ  /\  ( G `  y )  e.  ZZ )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4542, 43, 44syl2an 287 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  ( ZZ>= `  C )  /\  ( G `  y )  e.  ( ZZ>= `  C )
)  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
4640, 41, 45syl2anc 409 . . . . . . . 8  |-  ( ( y  e.  om  /\  ph )  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
4733, 34, 39frec2uzzd 10325 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  A )  e.  ZZ )
4833, 34, 35frec2uzzd 10325 . . . . . . . . 9  |-  ( ( y  e.  om  /\  ph )  ->  ( G `  y )  e.  ZZ )
49 zleloe 9229 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  ZZ  /\  ( G `  y )  e.  ZZ )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
5047, 48, 49syl2anc 409 . . . . . . . 8  |-  ( ( y  e.  om  /\  ph )  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( ( G `
 A )  < 
( G `  y
)  \/  ( G `
 A )  =  ( G `  y
) ) ) )
5137, 46, 503bitr2rd 216 . . . . . . 7  |-  ( ( y  e.  om  /\  ph )  ->  ( (
( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
5231, 51imbi12d 233 . . . . . 6  |-  ( ( y  e.  om  /\  ph )  ->  ( (
( A  e.  y  \/  A  =  y )  ->  ( ( G `  A )  <  ( G `  y
)  \/  ( G `
 A )  =  ( G `  y
) ) )  <->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5328, 52syl5ib 153 . . . . 5  |-  ( ( y  e.  om  /\  ph )  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y ) )  -> 
( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5453ex 114 . . . 4  |-  ( y  e.  om  ->  ( ph  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y
) )  ->  ( A  e.  suc  y  -> 
( G `  A
)  <  ( G `  suc  y ) ) ) ) )
5554a2d 26 . . 3  |-  ( y  e.  om  ->  (
( ph  ->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y
) ) )  -> 
( ph  ->  ( A  e.  suc  y  -> 
( G `  A
)  <  ( G `  suc  y ) ) ) ) )
566, 11, 16, 21, 24, 55finds 4571 . 2  |-  ( B  e.  om  ->  ( ph  ->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B )
) ) )
571, 56mpcom 36 1  |-  ( ph  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1342    e. wcel 2135   (/)c0 3404   class class class wbr 3976    |-> cmpt 4037   suc csuc 4337   omcom 4561   ` cfv 5182  (class class class)co 5836  freccfrec 6349   1c1 7745    + caddc 7747    < clt 7924    <_ cle 7925   ZZcz 9182   ZZ>=cuz 9457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458
This theorem is referenced by:  frec2uzlt2d  10329  frec2uzf1od  10331  ennnfonelemex  12284  ennnfonelemnn0  12292
  Copyright terms: Public domain W3C validator