| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xsubge0 | Unicode version | ||
| Description: Extended real version of subge0 8583. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xsubge0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9933 |
. 2
| |
| 2 | 0xr 8154 |
. . . . 5
| |
| 3 | rexr 8153 |
. . . . . 6
| |
| 4 | xnegcl 9989 |
. . . . . . 7
| |
| 5 | xaddcl 10017 |
. . . . . . 7
| |
| 6 | 4, 5 | sylan2 286 |
. . . . . 6
|
| 7 | 3, 6 | sylan2 286 |
. . . . 5
|
| 8 | simpr 110 |
. . . . 5
| |
| 9 | xleadd1 10032 |
. . . . 5
| |
| 10 | 2, 7, 8, 9 | mp3an2i 1355 |
. . . 4
|
| 11 | 3 | adantl 277 |
. . . . . 6
|
| 12 | xaddid2 10020 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | xnpcan 10029 |
. . . . 5
| |
| 15 | 13, 14 | breq12d 4072 |
. . . 4
|
| 16 | 10, 15 | bitrd 188 |
. . 3
|
| 17 | pnfxr 8160 |
. . . . . . 7
| |
| 18 | xrletri3 9961 |
. . . . . . 7
| |
| 19 | 17, 18 | mpan2 425 |
. . . . . 6
|
| 20 | rexr 8153 |
. . . . . . . . . . 11
| |
| 21 | renepnf 8155 |
. . . . . . . . . . 11
| |
| 22 | xaddmnf1 10005 |
. . . . . . . . . . 11
| |
| 23 | 20, 21, 22 | syl2anc 411 |
. . . . . . . . . 10
|
| 24 | mnflt0 9941 |
. . . . . . . . . . . . 13
| |
| 25 | mnfxr 8164 |
. . . . . . . . . . . . . . 15
| |
| 26 | xrlenlt 8172 |
. . . . . . . . . . . . . . 15
| |
| 27 | 2, 25, 26 | mp2an 426 |
. . . . . . . . . . . . . 14
|
| 28 | 27 | biimpi 120 |
. . . . . . . . . . . . 13
|
| 29 | 24, 28 | mt2 641 |
. . . . . . . . . . . 12
|
| 30 | breq2 4063 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | mtbiri 677 |
. . . . . . . . . . 11
|
| 32 | 31 | pm2.21d 620 |
. . . . . . . . . 10
|
| 33 | 23, 32 | syl 14 |
. . . . . . . . 9
|
| 34 | 33 | adantl 277 |
. . . . . . . 8
|
| 35 | simpr 110 |
. . . . . . . . 9
| |
| 36 | 35 | a1d 22 |
. . . . . . . 8
|
| 37 | eleq1 2270 |
. . . . . . . . . . . 12
| |
| 38 | 25, 37 | mpbiri 168 |
. . . . . . . . . . 11
|
| 39 | mnfnepnf 8163 |
. . . . . . . . . . . 12
| |
| 40 | neeq1 2391 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | mpbiri 168 |
. . . . . . . . . . 11
|
| 42 | 38, 41, 22 | syl2anc 411 |
. . . . . . . . . 10
|
| 43 | 42, 32 | syl 14 |
. . . . . . . . 9
|
| 44 | 43 | adantl 277 |
. . . . . . . 8
|
| 45 | elxr 9933 |
. . . . . . . . 9
| |
| 46 | 45 | biimpi 120 |
. . . . . . . 8
|
| 47 | 34, 36, 44, 46 | mpjao3dan 1320 |
. . . . . . 7
|
| 48 | 0le0 9160 |
. . . . . . . 8
| |
| 49 | oveq1 5974 |
. . . . . . . . 9
| |
| 50 | pnfaddmnf 10007 |
. . . . . . . . 9
| |
| 51 | 49, 50 | eqtrdi 2256 |
. . . . . . . 8
|
| 52 | 48, 51 | breqtrrid 4097 |
. . . . . . 7
|
| 53 | 47, 52 | impbid1 142 |
. . . . . 6
|
| 54 | pnfge 9946 |
. . . . . . 7
| |
| 55 | 54 | biantrurd 305 |
. . . . . 6
|
| 56 | 19, 53, 55 | 3bitr4d 220 |
. . . . 5
|
| 57 | 56 | adantr 276 |
. . . 4
|
| 58 | xnegeq 9984 |
. . . . . . . 8
| |
| 59 | xnegpnf 9985 |
. . . . . . . 8
| |
| 60 | 58, 59 | eqtrdi 2256 |
. . . . . . 7
|
| 61 | 60 | adantl 277 |
. . . . . 6
|
| 62 | 61 | oveq2d 5983 |
. . . . 5
|
| 63 | 62 | breq2d 4071 |
. . . 4
|
| 64 | breq1 4062 |
. . . . 5
| |
| 65 | 64 | adantl 277 |
. . . 4
|
| 66 | 57, 63, 65 | 3bitr4d 220 |
. . 3
|
| 67 | oveq1 5974 |
. . . . . . . . . 10
| |
| 68 | mnfaddpnf 10008 |
. . . . . . . . . 10
| |
| 69 | 67, 68 | eqtrdi 2256 |
. . . . . . . . 9
|
| 70 | 69 | adantl 277 |
. . . . . . . 8
|
| 71 | 48, 70 | breqtrrid 4097 |
. . . . . . 7
|
| 72 | df-ne 2379 |
. . . . . . . 8
| |
| 73 | 0lepnf 9947 |
. . . . . . . . 9
| |
| 74 | xaddpnf1 10003 |
. . . . . . . . 9
| |
| 75 | 73, 74 | breqtrrid 4097 |
. . . . . . . 8
|
| 76 | 72, 75 | sylan2br 288 |
. . . . . . 7
|
| 77 | xrmnfdc 10000 |
. . . . . . . 8
| |
| 78 | exmiddc 838 |
. . . . . . . 8
| |
| 79 | 77, 78 | syl 14 |
. . . . . . 7
|
| 80 | 71, 76, 79 | mpjaodan 800 |
. . . . . 6
|
| 81 | mnfle 9949 |
. . . . . 6
| |
| 82 | 80, 81 | 2thd 175 |
. . . . 5
|
| 83 | 82 | adantr 276 |
. . . 4
|
| 84 | xnegeq 9984 |
. . . . . . . 8
| |
| 85 | xnegmnf 9986 |
. . . . . . . 8
| |
| 86 | 84, 85 | eqtrdi 2256 |
. . . . . . 7
|
| 87 | 86 | adantl 277 |
. . . . . 6
|
| 88 | 87 | oveq2d 5983 |
. . . . 5
|
| 89 | 88 | breq2d 4071 |
. . . 4
|
| 90 | breq1 4062 |
. . . . 5
| |
| 91 | 90 | adantl 277 |
. . . 4
|
| 92 | 83, 89, 91 | 3bitr4d 220 |
. . 3
|
| 93 | 16, 66, 92 | 3jaodan 1319 |
. 2
|
| 94 | 1, 93 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-xneg 9929 df-xadd 9930 |
| This theorem is referenced by: ssblps 15012 ssbl 15013 |
| Copyright terms: Public domain | W3C validator |