Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xsubge0 | Unicode version |
Description: Extended real version of subge0 8373. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xsubge0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9712 | . 2 | |
2 | 0xr 7945 | . . . . 5 | |
3 | rexr 7944 | . . . . . 6 | |
4 | xnegcl 9768 | . . . . . . 7 | |
5 | xaddcl 9796 | . . . . . . 7 | |
6 | 4, 5 | sylan2 284 | . . . . . 6 |
7 | 3, 6 | sylan2 284 | . . . . 5 |
8 | simpr 109 | . . . . 5 | |
9 | xleadd1 9811 | . . . . 5 | |
10 | 2, 7, 8, 9 | mp3an2i 1332 | . . . 4 |
11 | 3 | adantl 275 | . . . . . 6 |
12 | xaddid2 9799 | . . . . . 6 | |
13 | 11, 12 | syl 14 | . . . . 5 |
14 | xnpcan 9808 | . . . . 5 | |
15 | 13, 14 | breq12d 3995 | . . . 4 |
16 | 10, 15 | bitrd 187 | . . 3 |
17 | pnfxr 7951 | . . . . . . 7 | |
18 | xrletri3 9740 | . . . . . . 7 | |
19 | 17, 18 | mpan2 422 | . . . . . 6 |
20 | rexr 7944 | . . . . . . . . . . 11 | |
21 | renepnf 7946 | . . . . . . . . . . 11 | |
22 | xaddmnf1 9784 | . . . . . . . . . . 11 | |
23 | 20, 21, 22 | syl2anc 409 | . . . . . . . . . 10 |
24 | mnflt0 9720 | . . . . . . . . . . . . 13 | |
25 | mnfxr 7955 | . . . . . . . . . . . . . . 15 | |
26 | xrlenlt 7963 | . . . . . . . . . . . . . . 15 | |
27 | 2, 25, 26 | mp2an 423 | . . . . . . . . . . . . . 14 |
28 | 27 | biimpi 119 | . . . . . . . . . . . . 13 |
29 | 24, 28 | mt2 630 | . . . . . . . . . . . 12 |
30 | breq2 3986 | . . . . . . . . . . . 12 | |
31 | 29, 30 | mtbiri 665 | . . . . . . . . . . 11 |
32 | 31 | pm2.21d 609 | . . . . . . . . . 10 |
33 | 23, 32 | syl 14 | . . . . . . . . 9 |
34 | 33 | adantl 275 | . . . . . . . 8 |
35 | simpr 109 | . . . . . . . . 9 | |
36 | 35 | a1d 22 | . . . . . . . 8 |
37 | eleq1 2229 | . . . . . . . . . . . 12 | |
38 | 25, 37 | mpbiri 167 | . . . . . . . . . . 11 |
39 | mnfnepnf 7954 | . . . . . . . . . . . 12 | |
40 | neeq1 2349 | . . . . . . . . . . . 12 | |
41 | 39, 40 | mpbiri 167 | . . . . . . . . . . 11 |
42 | 38, 41, 22 | syl2anc 409 | . . . . . . . . . 10 |
43 | 42, 32 | syl 14 | . . . . . . . . 9 |
44 | 43 | adantl 275 | . . . . . . . 8 |
45 | elxr 9712 | . . . . . . . . 9 | |
46 | 45 | biimpi 119 | . . . . . . . 8 |
47 | 34, 36, 44, 46 | mpjao3dan 1297 | . . . . . . 7 |
48 | 0le0 8946 | . . . . . . . 8 | |
49 | oveq1 5849 | . . . . . . . . 9 | |
50 | pnfaddmnf 9786 | . . . . . . . . 9 | |
51 | 49, 50 | eqtrdi 2215 | . . . . . . . 8 |
52 | 48, 51 | breqtrrid 4020 | . . . . . . 7 |
53 | 47, 52 | impbid1 141 | . . . . . 6 |
54 | pnfge 9725 | . . . . . . 7 | |
55 | 54 | biantrurd 303 | . . . . . 6 |
56 | 19, 53, 55 | 3bitr4d 219 | . . . . 5 |
57 | 56 | adantr 274 | . . . 4 |
58 | xnegeq 9763 | . . . . . . . 8 | |
59 | xnegpnf 9764 | . . . . . . . 8 | |
60 | 58, 59 | eqtrdi 2215 | . . . . . . 7 |
61 | 60 | adantl 275 | . . . . . 6 |
62 | 61 | oveq2d 5858 | . . . . 5 |
63 | 62 | breq2d 3994 | . . . 4 |
64 | breq1 3985 | . . . . 5 | |
65 | 64 | adantl 275 | . . . 4 |
66 | 57, 63, 65 | 3bitr4d 219 | . . 3 |
67 | oveq1 5849 | . . . . . . . . . 10 | |
68 | mnfaddpnf 9787 | . . . . . . . . . 10 | |
69 | 67, 68 | eqtrdi 2215 | . . . . . . . . 9 |
70 | 69 | adantl 275 | . . . . . . . 8 |
71 | 48, 70 | breqtrrid 4020 | . . . . . . 7 |
72 | df-ne 2337 | . . . . . . . 8 | |
73 | 0lepnf 9726 | . . . . . . . . 9 | |
74 | xaddpnf1 9782 | . . . . . . . . 9 | |
75 | 73, 74 | breqtrrid 4020 | . . . . . . . 8 |
76 | 72, 75 | sylan2br 286 | . . . . . . 7 |
77 | xrmnfdc 9779 | . . . . . . . 8 DECID | |
78 | exmiddc 826 | . . . . . . . 8 DECID | |
79 | 77, 78 | syl 14 | . . . . . . 7 |
80 | 71, 76, 79 | mpjaodan 788 | . . . . . 6 |
81 | mnfle 9728 | . . . . . 6 | |
82 | 80, 81 | 2thd 174 | . . . . 5 |
83 | 82 | adantr 274 | . . . 4 |
84 | xnegeq 9763 | . . . . . . . 8 | |
85 | xnegmnf 9765 | . . . . . . . 8 | |
86 | 84, 85 | eqtrdi 2215 | . . . . . . 7 |
87 | 86 | adantl 275 | . . . . . 6 |
88 | 87 | oveq2d 5858 | . . . . 5 |
89 | 88 | breq2d 3994 | . . . 4 |
90 | breq1 3985 | . . . . 5 | |
91 | 90 | adantl 275 | . . . 4 |
92 | 83, 89, 91 | 3bitr4d 219 | . . 3 |
93 | 16, 66, 92 | 3jaodan 1296 | . 2 |
94 | 1, 93 | sylan2b 285 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 w3o 967 wceq 1343 wcel 2136 wne 2336 class class class wbr 3982 (class class class)co 5842 cr 7752 cc0 7753 cpnf 7930 cmnf 7931 cxr 7932 clt 7933 cle 7934 cxne 9705 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-xneg 9708 df-xadd 9709 |
This theorem is referenced by: ssblps 13065 ssbl 13066 |
Copyright terms: Public domain | W3C validator |