| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xsubge0 | Unicode version | ||
| Description: Extended real version of subge0 8618. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xsubge0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9968 |
. 2
| |
| 2 | 0xr 8189 |
. . . . 5
| |
| 3 | rexr 8188 |
. . . . . 6
| |
| 4 | xnegcl 10024 |
. . . . . . 7
| |
| 5 | xaddcl 10052 |
. . . . . . 7
| |
| 6 | 4, 5 | sylan2 286 |
. . . . . 6
|
| 7 | 3, 6 | sylan2 286 |
. . . . 5
|
| 8 | simpr 110 |
. . . . 5
| |
| 9 | xleadd1 10067 |
. . . . 5
| |
| 10 | 2, 7, 8, 9 | mp3an2i 1376 |
. . . 4
|
| 11 | 3 | adantl 277 |
. . . . . 6
|
| 12 | xaddid2 10055 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | xnpcan 10064 |
. . . . 5
| |
| 15 | 13, 14 | breq12d 4095 |
. . . 4
|
| 16 | 10, 15 | bitrd 188 |
. . 3
|
| 17 | pnfxr 8195 |
. . . . . . 7
| |
| 18 | xrletri3 9996 |
. . . . . . 7
| |
| 19 | 17, 18 | mpan2 425 |
. . . . . 6
|
| 20 | rexr 8188 |
. . . . . . . . . . 11
| |
| 21 | renepnf 8190 |
. . . . . . . . . . 11
| |
| 22 | xaddmnf1 10040 |
. . . . . . . . . . 11
| |
| 23 | 20, 21, 22 | syl2anc 411 |
. . . . . . . . . 10
|
| 24 | mnflt0 9976 |
. . . . . . . . . . . . 13
| |
| 25 | mnfxr 8199 |
. . . . . . . . . . . . . . 15
| |
| 26 | xrlenlt 8207 |
. . . . . . . . . . . . . . 15
| |
| 27 | 2, 25, 26 | mp2an 426 |
. . . . . . . . . . . . . 14
|
| 28 | 27 | biimpi 120 |
. . . . . . . . . . . . 13
|
| 29 | 24, 28 | mt2 643 |
. . . . . . . . . . . 12
|
| 30 | breq2 4086 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | mtbiri 679 |
. . . . . . . . . . 11
|
| 32 | 31 | pm2.21d 622 |
. . . . . . . . . 10
|
| 33 | 23, 32 | syl 14 |
. . . . . . . . 9
|
| 34 | 33 | adantl 277 |
. . . . . . . 8
|
| 35 | simpr 110 |
. . . . . . . . 9
| |
| 36 | 35 | a1d 22 |
. . . . . . . 8
|
| 37 | eleq1 2292 |
. . . . . . . . . . . 12
| |
| 38 | 25, 37 | mpbiri 168 |
. . . . . . . . . . 11
|
| 39 | mnfnepnf 8198 |
. . . . . . . . . . . 12
| |
| 40 | neeq1 2413 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | mpbiri 168 |
. . . . . . . . . . 11
|
| 42 | 38, 41, 22 | syl2anc 411 |
. . . . . . . . . 10
|
| 43 | 42, 32 | syl 14 |
. . . . . . . . 9
|
| 44 | 43 | adantl 277 |
. . . . . . . 8
|
| 45 | elxr 9968 |
. . . . . . . . 9
| |
| 46 | 45 | biimpi 120 |
. . . . . . . 8
|
| 47 | 34, 36, 44, 46 | mpjao3dan 1341 |
. . . . . . 7
|
| 48 | 0le0 9195 |
. . . . . . . 8
| |
| 49 | oveq1 6007 |
. . . . . . . . 9
| |
| 50 | pnfaddmnf 10042 |
. . . . . . . . 9
| |
| 51 | 49, 50 | eqtrdi 2278 |
. . . . . . . 8
|
| 52 | 48, 51 | breqtrrid 4120 |
. . . . . . 7
|
| 53 | 47, 52 | impbid1 142 |
. . . . . 6
|
| 54 | pnfge 9981 |
. . . . . . 7
| |
| 55 | 54 | biantrurd 305 |
. . . . . 6
|
| 56 | 19, 53, 55 | 3bitr4d 220 |
. . . . 5
|
| 57 | 56 | adantr 276 |
. . . 4
|
| 58 | xnegeq 10019 |
. . . . . . . 8
| |
| 59 | xnegpnf 10020 |
. . . . . . . 8
| |
| 60 | 58, 59 | eqtrdi 2278 |
. . . . . . 7
|
| 61 | 60 | adantl 277 |
. . . . . 6
|
| 62 | 61 | oveq2d 6016 |
. . . . 5
|
| 63 | 62 | breq2d 4094 |
. . . 4
|
| 64 | breq1 4085 |
. . . . 5
| |
| 65 | 64 | adantl 277 |
. . . 4
|
| 66 | 57, 63, 65 | 3bitr4d 220 |
. . 3
|
| 67 | oveq1 6007 |
. . . . . . . . . 10
| |
| 68 | mnfaddpnf 10043 |
. . . . . . . . . 10
| |
| 69 | 67, 68 | eqtrdi 2278 |
. . . . . . . . 9
|
| 70 | 69 | adantl 277 |
. . . . . . . 8
|
| 71 | 48, 70 | breqtrrid 4120 |
. . . . . . 7
|
| 72 | df-ne 2401 |
. . . . . . . 8
| |
| 73 | 0lepnf 9982 |
. . . . . . . . 9
| |
| 74 | xaddpnf1 10038 |
. . . . . . . . 9
| |
| 75 | 73, 74 | breqtrrid 4120 |
. . . . . . . 8
|
| 76 | 72, 75 | sylan2br 288 |
. . . . . . 7
|
| 77 | xrmnfdc 10035 |
. . . . . . . 8
| |
| 78 | exmiddc 841 |
. . . . . . . 8
| |
| 79 | 77, 78 | syl 14 |
. . . . . . 7
|
| 80 | 71, 76, 79 | mpjaodan 803 |
. . . . . 6
|
| 81 | mnfle 9984 |
. . . . . 6
| |
| 82 | 80, 81 | 2thd 175 |
. . . . 5
|
| 83 | 82 | adantr 276 |
. . . 4
|
| 84 | xnegeq 10019 |
. . . . . . . 8
| |
| 85 | xnegmnf 10021 |
. . . . . . . 8
| |
| 86 | 84, 85 | eqtrdi 2278 |
. . . . . . 7
|
| 87 | 86 | adantl 277 |
. . . . . 6
|
| 88 | 87 | oveq2d 6016 |
. . . . 5
|
| 89 | 88 | breq2d 4094 |
. . . 4
|
| 90 | breq1 4085 |
. . . . 5
| |
| 91 | 90 | adantl 277 |
. . . 4
|
| 92 | 83, 89, 91 | 3bitr4d 220 |
. . 3
|
| 93 | 16, 66, 92 | 3jaodan 1340 |
. 2
|
| 94 | 1, 93 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-xneg 9964 df-xadd 9965 |
| This theorem is referenced by: ssblps 15093 ssbl 15094 |
| Copyright terms: Public domain | W3C validator |