ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xsubge0 Unicode version

Theorem xsubge0 9554
Description: Extended real version of subge0 8153. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
xsubge0  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
0  <_  ( A +e  -e B )  <->  B  <_  A ) )

Proof of Theorem xsubge0
StepHypRef Expression
1 elxr 9453 . 2  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
2 0xr 7733 . . . . 5  |-  0  e.  RR*
3 rexr 7732 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  RR* )
4 xnegcl 9505 . . . . . . 7  |-  ( B  e.  RR*  ->  -e
B  e.  RR* )
5 xaddcl 9533 . . . . . . 7  |-  ( ( A  e.  RR*  /\  -e
B  e.  RR* )  ->  ( A +e  -e B )  e. 
RR* )
64, 5sylan2 282 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e  -e
B )  e.  RR* )
73, 6sylan2 282 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A +e  -e
B )  e.  RR* )
8 simpr 109 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  B  e.  RR )
9 xleadd1 9548 . . . . 5  |-  ( ( 0  e.  RR*  /\  ( A +e  -e
B )  e.  RR*  /\  B  e.  RR )  ->  ( 0  <_ 
( A +e  -e B )  <->  ( 0 +e B )  <_  ( ( A +e  -e
B ) +e
B ) ) )
102, 7, 8, 9mp3an2i 1303 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
0  <_  ( A +e  -e B )  <->  ( 0 +e B )  <_ 
( ( A +e  -e B ) +e B ) ) )
113adantl 273 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  B  e.  RR* )
12 xaddid2 9536 . . . . . 6  |-  ( B  e.  RR*  ->  ( 0 +e B )  =  B )
1311, 12syl 14 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
0 +e B )  =  B )
14 xnpcan 9545 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e  -e B ) +e B )  =  A )
1513, 14breq12d 3908 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( 0 +e
B )  <_  (
( A +e  -e B ) +e B )  <->  B  <_  A ) )
1610, 15bitrd 187 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
0  <_  ( A +e  -e B )  <->  B  <_  A ) )
17 pnfxr 7739 . . . . . . 7  |- +oo  e.  RR*
18 xrletri3 9478 . . . . . . 7  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  ( A  = +oo  <->  ( A  <_ +oo  /\ +oo  <_  A ) ) )
1917, 18mpan2 419 . . . . . 6  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  ( A  <_ +oo  /\ +oo  <_  A ) ) )
20 rexr 7732 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  RR* )
21 renepnf 7734 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  =/= +oo )
22 xaddmnf1 9521 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
2320, 21, 22syl2anc 406 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A +e -oo )  = -oo )
24 mnflt0 9460 . . . . . . . . . . . . 13  |- -oo  <  0
25 mnfxr 7743 . . . . . . . . . . . . . . 15  |- -oo  e.  RR*
26 xrlenlt 7750 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR*  /\ -oo  e.  RR* )  ->  (
0  <_ -oo  <->  -. -oo  <  0 ) )
272, 25, 26mp2an 420 . . . . . . . . . . . . . 14  |-  ( 0  <_ -oo  <->  -. -oo  <  0
)
2827biimpi 119 . . . . . . . . . . . . 13  |-  ( 0  <_ -oo  ->  -. -oo  <  0 )
2924, 28mt2 612 . . . . . . . . . . . 12  |-  -.  0  <_ -oo
30 breq2 3899 . . . . . . . . . . . 12  |-  ( ( A +e -oo )  = -oo  ->  (
0  <_  ( A +e -oo )  <->  0  <_ -oo ) )
3129, 30mtbiri 647 . . . . . . . . . . 11  |-  ( ( A +e -oo )  = -oo  ->  -.  0  <_  ( A +e -oo ) )
3231pm2.21d 591 . . . . . . . . . 10  |-  ( ( A +e -oo )  = -oo  ->  (
0  <_  ( A +e -oo )  ->  A  = +oo )
)
3323, 32syl 14 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
0  <_  ( A +e -oo )  ->  A  = +oo )
)
3433adantl 273 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  e.  RR )  ->  (
0  <_  ( A +e -oo )  ->  A  = +oo )
)
35 simpr 109 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  A  = +oo )  ->  A  = +oo )
3635a1d 22 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  = +oo )  ->  (
0  <_  ( A +e -oo )  ->  A  = +oo )
)
37 eleq1 2177 . . . . . . . . . . . 12  |-  ( A  = -oo  ->  ( A  e.  RR*  <-> -oo  e.  RR* ) )
3825, 37mpbiri 167 . . . . . . . . . . 11  |-  ( A  = -oo  ->  A  e.  RR* )
39 mnfnepnf 7742 . . . . . . . . . . . 12  |- -oo  =/= +oo
40 neeq1 2295 . . . . . . . . . . . 12  |-  ( A  = -oo  ->  ( A  =/= +oo  <-> -oo  =/= +oo )
)
4139, 40mpbiri 167 . . . . . . . . . . 11  |-  ( A  = -oo  ->  A  =/= +oo )
4238, 41, 22syl2anc 406 . . . . . . . . . 10  |-  ( A  = -oo  ->  ( A +e -oo )  = -oo )
4342, 32syl 14 . . . . . . . . 9  |-  ( A  = -oo  ->  (
0  <_  ( A +e -oo )  ->  A  = +oo )
)
4443adantl 273 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  = -oo )  ->  (
0  <_  ( A +e -oo )  ->  A  = +oo )
)
45 elxr 9453 . . . . . . . . 9  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
4645biimpi 119 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
4734, 36, 44, 46mpjao3dan 1268 . . . . . . 7  |-  ( A  e.  RR*  ->  ( 0  <_  ( A +e -oo )  ->  A  = +oo ) )
48 0le0 8716 . . . . . . . 8  |-  0  <_  0
49 oveq1 5735 . . . . . . . . 9  |-  ( A  = +oo  ->  ( A +e -oo )  =  ( +oo +e -oo ) )
50 pnfaddmnf 9523 . . . . . . . . 9  |-  ( +oo +e -oo )  =  0
5149, 50syl6eq 2163 . . . . . . . 8  |-  ( A  = +oo  ->  ( A +e -oo )  =  0 )
5248, 51breqtrrid 3931 . . . . . . 7  |-  ( A  = +oo  ->  0  <_  ( A +e -oo ) )
5347, 52impbid1 141 . . . . . 6  |-  ( A  e.  RR*  ->  ( 0  <_  ( A +e -oo )  <->  A  = +oo ) )
54 pnfge 9465 . . . . . . 7  |-  ( A  e.  RR*  ->  A  <_ +oo )
5554biantrurd 301 . . . . . 6  |-  ( A  e.  RR*  ->  ( +oo  <_  A  <->  ( A  <_ +oo  /\ +oo  <_  A
) ) )
5619, 53, 553bitr4d 219 . . . . 5  |-  ( A  e.  RR*  ->  ( 0  <_  ( A +e -oo )  <-> +oo  <_  A
) )
5756adantr 272 . . . 4  |-  ( ( A  e.  RR*  /\  B  = +oo )  ->  (
0  <_  ( A +e -oo )  <-> +oo 
<_  A ) )
58 xnegeq 9500 . . . . . . . 8  |-  ( B  = +oo  ->  -e
B  =  -e +oo )
59 xnegpnf 9501 . . . . . . . 8  |-  -e +oo  = -oo
6058, 59syl6eq 2163 . . . . . . 7  |-  ( B  = +oo  ->  -e
B  = -oo )
6160adantl 273 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  = +oo )  ->  -e
B  = -oo )
6261oveq2d 5744 . . . . 5  |-  ( ( A  e.  RR*  /\  B  = +oo )  ->  ( A +e  -e
B )  =  ( A +e -oo ) )
6362breq2d 3907 . . . 4  |-  ( ( A  e.  RR*  /\  B  = +oo )  ->  (
0  <_  ( A +e  -e B )  <->  0  <_  ( A +e -oo )
) )
64 breq1 3898 . . . . 5  |-  ( B  = +oo  ->  ( B  <_  A  <-> +oo  <_  A
) )
6564adantl 273 . . . 4  |-  ( ( A  e.  RR*  /\  B  = +oo )  ->  ( B  <_  A  <-> +oo  <_  A
) )
6657, 63, 653bitr4d 219 . . 3  |-  ( ( A  e.  RR*  /\  B  = +oo )  ->  (
0  <_  ( A +e  -e B )  <->  B  <_  A ) )
67 oveq1 5735 . . . . . . . . . 10  |-  ( A  = -oo  ->  ( A +e +oo )  =  ( -oo +e +oo ) )
68 mnfaddpnf 9524 . . . . . . . . . 10  |-  ( -oo +e +oo )  =  0
6967, 68syl6eq 2163 . . . . . . . . 9  |-  ( A  = -oo  ->  ( A +e +oo )  =  0 )
7069adantl 273 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  = -oo )  ->  ( A +e +oo )  =  0 )
7148, 70breqtrrid 3931 . . . . . . 7  |-  ( ( A  e.  RR*  /\  A  = -oo )  ->  0  <_  ( A +e +oo ) )
72 df-ne 2283 . . . . . . . 8  |-  ( A  =/= -oo  <->  -.  A  = -oo )
73 0lepnf 9466 . . . . . . . . 9  |-  0  <_ +oo
74 xaddpnf1 9519 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
7573, 74breqtrrid 3931 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  0  <_  ( A +e +oo ) )
7672, 75sylan2br 284 . . . . . . 7  |-  ( ( A  e.  RR*  /\  -.  A  = -oo )  ->  0  <_  ( A +e +oo )
)
77 xrmnfdc 9516 . . . . . . . 8  |-  ( A  e.  RR*  -> DECID  A  = -oo )
78 exmiddc 804 . . . . . . . 8  |-  (DECID  A  = -oo  ->  ( A  = -oo  \/  -.  A  = -oo ) )
7977, 78syl 14 . . . . . . 7  |-  ( A  e.  RR*  ->  ( A  = -oo  \/  -.  A  = -oo )
)
8071, 76, 79mpjaodan 770 . . . . . 6  |-  ( A  e.  RR*  ->  0  <_ 
( A +e +oo ) )
81 mnfle 9468 . . . . . 6  |-  ( A  e.  RR*  -> -oo  <_  A )
8280, 812thd 174 . . . . 5  |-  ( A  e.  RR*  ->  ( 0  <_  ( A +e +oo )  <-> -oo  <_  A
) )
8382adantr 272 . . . 4  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  (
0  <_  ( A +e +oo )  <-> -oo 
<_  A ) )
84 xnegeq 9500 . . . . . . . 8  |-  ( B  = -oo  ->  -e
B  =  -e -oo )
85 xnegmnf 9502 . . . . . . . 8  |-  -e -oo  = +oo
8684, 85syl6eq 2163 . . . . . . 7  |-  ( B  = -oo  ->  -e
B  = +oo )
8786adantl 273 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  -e
B  = +oo )
8887oveq2d 5744 . . . . 5  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( A +e  -e
B )  =  ( A +e +oo ) )
8988breq2d 3907 . . . 4  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  (
0  <_  ( A +e  -e B )  <->  0  <_  ( A +e +oo )
) )
90 breq1 3898 . . . . 5  |-  ( B  = -oo  ->  ( B  <_  A  <-> -oo  <_  A
) )
9190adantl 273 . . . 4  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( B  <_  A  <-> -oo  <_  A
) )
9283, 89, 913bitr4d 219 . . 3  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  (
0  <_  ( A +e  -e B )  <->  B  <_  A ) )
9316, 66, 923jaodan 1267 . 2  |-  ( ( A  e.  RR*  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  -> 
( 0  <_  ( A +e  -e
B )  <->  B  <_  A ) )
941, 93sylan2b 283 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
0  <_  ( A +e  -e B )  <->  B  <_  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680  DECID wdc 802    \/ w3o 944    = wceq 1314    e. wcel 1463    =/= wne 2282   class class class wbr 3895  (class class class)co 5728   RRcr 7543   0cc0 7544   +oocpnf 7718   -oocmnf 7719   RR*cxr 7720    < clt 7721    <_ cle 7722    -ecxne 9446   +ecxad 9447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7633  ax-resscn 7634  ax-1cn 7635  ax-1re 7636  ax-icn 7637  ax-addcl 7638  ax-addrcl 7639  ax-mulcl 7640  ax-addcom 7642  ax-addass 7644  ax-distr 7646  ax-i2m1 7647  ax-0id 7650  ax-rnegex 7651  ax-cnre 7653  ax-pre-ltirr 7654  ax-pre-apti 7657  ax-pre-ltadd 7658
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-pnf 7723  df-mnf 7724  df-xr 7725  df-ltxr 7726  df-le 7727  df-sub 7855  df-neg 7856  df-xneg 9449  df-xadd 9450
This theorem is referenced by:  ssblps  12411  ssbl  12412
  Copyright terms: Public domain W3C validator