Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xsubge0 | Unicode version |
Description: Extended real version of subge0 8344. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xsubge0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9676 | . 2 | |
2 | 0xr 7918 | . . . . 5 | |
3 | rexr 7917 | . . . . . 6 | |
4 | xnegcl 9729 | . . . . . . 7 | |
5 | xaddcl 9757 | . . . . . . 7 | |
6 | 4, 5 | sylan2 284 | . . . . . 6 |
7 | 3, 6 | sylan2 284 | . . . . 5 |
8 | simpr 109 | . . . . 5 | |
9 | xleadd1 9772 | . . . . 5 | |
10 | 2, 7, 8, 9 | mp3an2i 1324 | . . . 4 |
11 | 3 | adantl 275 | . . . . . 6 |
12 | xaddid2 9760 | . . . . . 6 | |
13 | 11, 12 | syl 14 | . . . . 5 |
14 | xnpcan 9769 | . . . . 5 | |
15 | 13, 14 | breq12d 3978 | . . . 4 |
16 | 10, 15 | bitrd 187 | . . 3 |
17 | pnfxr 7924 | . . . . . . 7 | |
18 | xrletri3 9702 | . . . . . . 7 | |
19 | 17, 18 | mpan2 422 | . . . . . 6 |
20 | rexr 7917 | . . . . . . . . . . 11 | |
21 | renepnf 7919 | . . . . . . . . . . 11 | |
22 | xaddmnf1 9745 | . . . . . . . . . . 11 | |
23 | 20, 21, 22 | syl2anc 409 | . . . . . . . . . 10 |
24 | mnflt0 9684 | . . . . . . . . . . . . 13 | |
25 | mnfxr 7928 | . . . . . . . . . . . . . . 15 | |
26 | xrlenlt 7936 | . . . . . . . . . . . . . . 15 | |
27 | 2, 25, 26 | mp2an 423 | . . . . . . . . . . . . . 14 |
28 | 27 | biimpi 119 | . . . . . . . . . . . . 13 |
29 | 24, 28 | mt2 630 | . . . . . . . . . . . 12 |
30 | breq2 3969 | . . . . . . . . . . . 12 | |
31 | 29, 30 | mtbiri 665 | . . . . . . . . . . 11 |
32 | 31 | pm2.21d 609 | . . . . . . . . . 10 |
33 | 23, 32 | syl 14 | . . . . . . . . 9 |
34 | 33 | adantl 275 | . . . . . . . 8 |
35 | simpr 109 | . . . . . . . . 9 | |
36 | 35 | a1d 22 | . . . . . . . 8 |
37 | eleq1 2220 | . . . . . . . . . . . 12 | |
38 | 25, 37 | mpbiri 167 | . . . . . . . . . . 11 |
39 | mnfnepnf 7927 | . . . . . . . . . . . 12 | |
40 | neeq1 2340 | . . . . . . . . . . . 12 | |
41 | 39, 40 | mpbiri 167 | . . . . . . . . . . 11 |
42 | 38, 41, 22 | syl2anc 409 | . . . . . . . . . 10 |
43 | 42, 32 | syl 14 | . . . . . . . . 9 |
44 | 43 | adantl 275 | . . . . . . . 8 |
45 | elxr 9676 | . . . . . . . . 9 | |
46 | 45 | biimpi 119 | . . . . . . . 8 |
47 | 34, 36, 44, 46 | mpjao3dan 1289 | . . . . . . 7 |
48 | 0le0 8916 | . . . . . . . 8 | |
49 | oveq1 5828 | . . . . . . . . 9 | |
50 | pnfaddmnf 9747 | . . . . . . . . 9 | |
51 | 49, 50 | eqtrdi 2206 | . . . . . . . 8 |
52 | 48, 51 | breqtrrid 4002 | . . . . . . 7 |
53 | 47, 52 | impbid1 141 | . . . . . 6 |
54 | pnfge 9689 | . . . . . . 7 | |
55 | 54 | biantrurd 303 | . . . . . 6 |
56 | 19, 53, 55 | 3bitr4d 219 | . . . . 5 |
57 | 56 | adantr 274 | . . . 4 |
58 | xnegeq 9724 | . . . . . . . 8 | |
59 | xnegpnf 9725 | . . . . . . . 8 | |
60 | 58, 59 | eqtrdi 2206 | . . . . . . 7 |
61 | 60 | adantl 275 | . . . . . 6 |
62 | 61 | oveq2d 5837 | . . . . 5 |
63 | 62 | breq2d 3977 | . . . 4 |
64 | breq1 3968 | . . . . 5 | |
65 | 64 | adantl 275 | . . . 4 |
66 | 57, 63, 65 | 3bitr4d 219 | . . 3 |
67 | oveq1 5828 | . . . . . . . . . 10 | |
68 | mnfaddpnf 9748 | . . . . . . . . . 10 | |
69 | 67, 68 | eqtrdi 2206 | . . . . . . . . 9 |
70 | 69 | adantl 275 | . . . . . . . 8 |
71 | 48, 70 | breqtrrid 4002 | . . . . . . 7 |
72 | df-ne 2328 | . . . . . . . 8 | |
73 | 0lepnf 9690 | . . . . . . . . 9 | |
74 | xaddpnf1 9743 | . . . . . . . . 9 | |
75 | 73, 74 | breqtrrid 4002 | . . . . . . . 8 |
76 | 72, 75 | sylan2br 286 | . . . . . . 7 |
77 | xrmnfdc 9740 | . . . . . . . 8 DECID | |
78 | exmiddc 822 | . . . . . . . 8 DECID | |
79 | 77, 78 | syl 14 | . . . . . . 7 |
80 | 71, 76, 79 | mpjaodan 788 | . . . . . 6 |
81 | mnfle 9692 | . . . . . 6 | |
82 | 80, 81 | 2thd 174 | . . . . 5 |
83 | 82 | adantr 274 | . . . 4 |
84 | xnegeq 9724 | . . . . . . . 8 | |
85 | xnegmnf 9726 | . . . . . . . 8 | |
86 | 84, 85 | eqtrdi 2206 | . . . . . . 7 |
87 | 86 | adantl 275 | . . . . . 6 |
88 | 87 | oveq2d 5837 | . . . . 5 |
89 | 88 | breq2d 3977 | . . . 4 |
90 | breq1 3968 | . . . . 5 | |
91 | 90 | adantl 275 | . . . 4 |
92 | 83, 89, 91 | 3bitr4d 219 | . . 3 |
93 | 16, 66, 92 | 3jaodan 1288 | . 2 |
94 | 1, 93 | sylan2b 285 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 820 w3o 962 wceq 1335 wcel 2128 wne 2327 class class class wbr 3965 (class class class)co 5821 cr 7725 cc0 7726 cpnf 7903 cmnf 7904 cxr 7905 clt 7906 cle 7907 cxne 9669 cxad 9670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-apti 7841 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-xneg 9672 df-xadd 9673 |
This theorem is referenced by: ssblps 12796 ssbl 12797 |
Copyright terms: Public domain | W3C validator |