| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xsubge0 | Unicode version | ||
| Description: Extended real version of subge0 8547. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xsubge0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9897 |
. 2
| |
| 2 | 0xr 8118 |
. . . . 5
| |
| 3 | rexr 8117 |
. . . . . 6
| |
| 4 | xnegcl 9953 |
. . . . . . 7
| |
| 5 | xaddcl 9981 |
. . . . . . 7
| |
| 6 | 4, 5 | sylan2 286 |
. . . . . 6
|
| 7 | 3, 6 | sylan2 286 |
. . . . 5
|
| 8 | simpr 110 |
. . . . 5
| |
| 9 | xleadd1 9996 |
. . . . 5
| |
| 10 | 2, 7, 8, 9 | mp3an2i 1354 |
. . . 4
|
| 11 | 3 | adantl 277 |
. . . . . 6
|
| 12 | xaddid2 9984 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | xnpcan 9993 |
. . . . 5
| |
| 15 | 13, 14 | breq12d 4056 |
. . . 4
|
| 16 | 10, 15 | bitrd 188 |
. . 3
|
| 17 | pnfxr 8124 |
. . . . . . 7
| |
| 18 | xrletri3 9925 |
. . . . . . 7
| |
| 19 | 17, 18 | mpan2 425 |
. . . . . 6
|
| 20 | rexr 8117 |
. . . . . . . . . . 11
| |
| 21 | renepnf 8119 |
. . . . . . . . . . 11
| |
| 22 | xaddmnf1 9969 |
. . . . . . . . . . 11
| |
| 23 | 20, 21, 22 | syl2anc 411 |
. . . . . . . . . 10
|
| 24 | mnflt0 9905 |
. . . . . . . . . . . . 13
| |
| 25 | mnfxr 8128 |
. . . . . . . . . . . . . . 15
| |
| 26 | xrlenlt 8136 |
. . . . . . . . . . . . . . 15
| |
| 27 | 2, 25, 26 | mp2an 426 |
. . . . . . . . . . . . . 14
|
| 28 | 27 | biimpi 120 |
. . . . . . . . . . . . 13
|
| 29 | 24, 28 | mt2 641 |
. . . . . . . . . . . 12
|
| 30 | breq2 4047 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | mtbiri 676 |
. . . . . . . . . . 11
|
| 32 | 31 | pm2.21d 620 |
. . . . . . . . . 10
|
| 33 | 23, 32 | syl 14 |
. . . . . . . . 9
|
| 34 | 33 | adantl 277 |
. . . . . . . 8
|
| 35 | simpr 110 |
. . . . . . . . 9
| |
| 36 | 35 | a1d 22 |
. . . . . . . 8
|
| 37 | eleq1 2267 |
. . . . . . . . . . . 12
| |
| 38 | 25, 37 | mpbiri 168 |
. . . . . . . . . . 11
|
| 39 | mnfnepnf 8127 |
. . . . . . . . . . . 12
| |
| 40 | neeq1 2388 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | mpbiri 168 |
. . . . . . . . . . 11
|
| 42 | 38, 41, 22 | syl2anc 411 |
. . . . . . . . . 10
|
| 43 | 42, 32 | syl 14 |
. . . . . . . . 9
|
| 44 | 43 | adantl 277 |
. . . . . . . 8
|
| 45 | elxr 9897 |
. . . . . . . . 9
| |
| 46 | 45 | biimpi 120 |
. . . . . . . 8
|
| 47 | 34, 36, 44, 46 | mpjao3dan 1319 |
. . . . . . 7
|
| 48 | 0le0 9124 |
. . . . . . . 8
| |
| 49 | oveq1 5950 |
. . . . . . . . 9
| |
| 50 | pnfaddmnf 9971 |
. . . . . . . . 9
| |
| 51 | 49, 50 | eqtrdi 2253 |
. . . . . . . 8
|
| 52 | 48, 51 | breqtrrid 4081 |
. . . . . . 7
|
| 53 | 47, 52 | impbid1 142 |
. . . . . 6
|
| 54 | pnfge 9910 |
. . . . . . 7
| |
| 55 | 54 | biantrurd 305 |
. . . . . 6
|
| 56 | 19, 53, 55 | 3bitr4d 220 |
. . . . 5
|
| 57 | 56 | adantr 276 |
. . . 4
|
| 58 | xnegeq 9948 |
. . . . . . . 8
| |
| 59 | xnegpnf 9949 |
. . . . . . . 8
| |
| 60 | 58, 59 | eqtrdi 2253 |
. . . . . . 7
|
| 61 | 60 | adantl 277 |
. . . . . 6
|
| 62 | 61 | oveq2d 5959 |
. . . . 5
|
| 63 | 62 | breq2d 4055 |
. . . 4
|
| 64 | breq1 4046 |
. . . . 5
| |
| 65 | 64 | adantl 277 |
. . . 4
|
| 66 | 57, 63, 65 | 3bitr4d 220 |
. . 3
|
| 67 | oveq1 5950 |
. . . . . . . . . 10
| |
| 68 | mnfaddpnf 9972 |
. . . . . . . . . 10
| |
| 69 | 67, 68 | eqtrdi 2253 |
. . . . . . . . 9
|
| 70 | 69 | adantl 277 |
. . . . . . . 8
|
| 71 | 48, 70 | breqtrrid 4081 |
. . . . . . 7
|
| 72 | df-ne 2376 |
. . . . . . . 8
| |
| 73 | 0lepnf 9911 |
. . . . . . . . 9
| |
| 74 | xaddpnf1 9967 |
. . . . . . . . 9
| |
| 75 | 73, 74 | breqtrrid 4081 |
. . . . . . . 8
|
| 76 | 72, 75 | sylan2br 288 |
. . . . . . 7
|
| 77 | xrmnfdc 9964 |
. . . . . . . 8
| |
| 78 | exmiddc 837 |
. . . . . . . 8
| |
| 79 | 77, 78 | syl 14 |
. . . . . . 7
|
| 80 | 71, 76, 79 | mpjaodan 799 |
. . . . . 6
|
| 81 | mnfle 9913 |
. . . . . 6
| |
| 82 | 80, 81 | 2thd 175 |
. . . . 5
|
| 83 | 82 | adantr 276 |
. . . 4
|
| 84 | xnegeq 9948 |
. . . . . . . 8
| |
| 85 | xnegmnf 9950 |
. . . . . . . 8
| |
| 86 | 84, 85 | eqtrdi 2253 |
. . . . . . 7
|
| 87 | 86 | adantl 277 |
. . . . . 6
|
| 88 | 87 | oveq2d 5959 |
. . . . 5
|
| 89 | 88 | breq2d 4055 |
. . . 4
|
| 90 | breq1 4046 |
. . . . 5
| |
| 91 | 90 | adantl 277 |
. . . 4
|
| 92 | 83, 89, 91 | 3bitr4d 220 |
. . 3
|
| 93 | 16, 66, 92 | 3jaodan 1318 |
. 2
|
| 94 | 1, 93 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-xneg 9893 df-xadd 9894 |
| This theorem is referenced by: ssblps 14868 ssbl 14869 |
| Copyright terms: Public domain | W3C validator |