| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xsubge0 | Unicode version | ||
| Description: Extended real version of subge0 8502. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xsubge0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9851 |
. 2
| |
| 2 | 0xr 8073 |
. . . . 5
| |
| 3 | rexr 8072 |
. . . . . 6
| |
| 4 | xnegcl 9907 |
. . . . . . 7
| |
| 5 | xaddcl 9935 |
. . . . . . 7
| |
| 6 | 4, 5 | sylan2 286 |
. . . . . 6
|
| 7 | 3, 6 | sylan2 286 |
. . . . 5
|
| 8 | simpr 110 |
. . . . 5
| |
| 9 | xleadd1 9950 |
. . . . 5
| |
| 10 | 2, 7, 8, 9 | mp3an2i 1353 |
. . . 4
|
| 11 | 3 | adantl 277 |
. . . . . 6
|
| 12 | xaddid2 9938 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | xnpcan 9947 |
. . . . 5
| |
| 15 | 13, 14 | breq12d 4046 |
. . . 4
|
| 16 | 10, 15 | bitrd 188 |
. . 3
|
| 17 | pnfxr 8079 |
. . . . . . 7
| |
| 18 | xrletri3 9879 |
. . . . . . 7
| |
| 19 | 17, 18 | mpan2 425 |
. . . . . 6
|
| 20 | rexr 8072 |
. . . . . . . . . . 11
| |
| 21 | renepnf 8074 |
. . . . . . . . . . 11
| |
| 22 | xaddmnf1 9923 |
. . . . . . . . . . 11
| |
| 23 | 20, 21, 22 | syl2anc 411 |
. . . . . . . . . 10
|
| 24 | mnflt0 9859 |
. . . . . . . . . . . . 13
| |
| 25 | mnfxr 8083 |
. . . . . . . . . . . . . . 15
| |
| 26 | xrlenlt 8091 |
. . . . . . . . . . . . . . 15
| |
| 27 | 2, 25, 26 | mp2an 426 |
. . . . . . . . . . . . . 14
|
| 28 | 27 | biimpi 120 |
. . . . . . . . . . . . 13
|
| 29 | 24, 28 | mt2 641 |
. . . . . . . . . . . 12
|
| 30 | breq2 4037 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | mtbiri 676 |
. . . . . . . . . . 11
|
| 32 | 31 | pm2.21d 620 |
. . . . . . . . . 10
|
| 33 | 23, 32 | syl 14 |
. . . . . . . . 9
|
| 34 | 33 | adantl 277 |
. . . . . . . 8
|
| 35 | simpr 110 |
. . . . . . . . 9
| |
| 36 | 35 | a1d 22 |
. . . . . . . 8
|
| 37 | eleq1 2259 |
. . . . . . . . . . . 12
| |
| 38 | 25, 37 | mpbiri 168 |
. . . . . . . . . . 11
|
| 39 | mnfnepnf 8082 |
. . . . . . . . . . . 12
| |
| 40 | neeq1 2380 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | mpbiri 168 |
. . . . . . . . . . 11
|
| 42 | 38, 41, 22 | syl2anc 411 |
. . . . . . . . . 10
|
| 43 | 42, 32 | syl 14 |
. . . . . . . . 9
|
| 44 | 43 | adantl 277 |
. . . . . . . 8
|
| 45 | elxr 9851 |
. . . . . . . . 9
| |
| 46 | 45 | biimpi 120 |
. . . . . . . 8
|
| 47 | 34, 36, 44, 46 | mpjao3dan 1318 |
. . . . . . 7
|
| 48 | 0le0 9079 |
. . . . . . . 8
| |
| 49 | oveq1 5929 |
. . . . . . . . 9
| |
| 50 | pnfaddmnf 9925 |
. . . . . . . . 9
| |
| 51 | 49, 50 | eqtrdi 2245 |
. . . . . . . 8
|
| 52 | 48, 51 | breqtrrid 4071 |
. . . . . . 7
|
| 53 | 47, 52 | impbid1 142 |
. . . . . 6
|
| 54 | pnfge 9864 |
. . . . . . 7
| |
| 55 | 54 | biantrurd 305 |
. . . . . 6
|
| 56 | 19, 53, 55 | 3bitr4d 220 |
. . . . 5
|
| 57 | 56 | adantr 276 |
. . . 4
|
| 58 | xnegeq 9902 |
. . . . . . . 8
| |
| 59 | xnegpnf 9903 |
. . . . . . . 8
| |
| 60 | 58, 59 | eqtrdi 2245 |
. . . . . . 7
|
| 61 | 60 | adantl 277 |
. . . . . 6
|
| 62 | 61 | oveq2d 5938 |
. . . . 5
|
| 63 | 62 | breq2d 4045 |
. . . 4
|
| 64 | breq1 4036 |
. . . . 5
| |
| 65 | 64 | adantl 277 |
. . . 4
|
| 66 | 57, 63, 65 | 3bitr4d 220 |
. . 3
|
| 67 | oveq1 5929 |
. . . . . . . . . 10
| |
| 68 | mnfaddpnf 9926 |
. . . . . . . . . 10
| |
| 69 | 67, 68 | eqtrdi 2245 |
. . . . . . . . 9
|
| 70 | 69 | adantl 277 |
. . . . . . . 8
|
| 71 | 48, 70 | breqtrrid 4071 |
. . . . . . 7
|
| 72 | df-ne 2368 |
. . . . . . . 8
| |
| 73 | 0lepnf 9865 |
. . . . . . . . 9
| |
| 74 | xaddpnf1 9921 |
. . . . . . . . 9
| |
| 75 | 73, 74 | breqtrrid 4071 |
. . . . . . . 8
|
| 76 | 72, 75 | sylan2br 288 |
. . . . . . 7
|
| 77 | xrmnfdc 9918 |
. . . . . . . 8
| |
| 78 | exmiddc 837 |
. . . . . . . 8
| |
| 79 | 77, 78 | syl 14 |
. . . . . . 7
|
| 80 | 71, 76, 79 | mpjaodan 799 |
. . . . . 6
|
| 81 | mnfle 9867 |
. . . . . 6
| |
| 82 | 80, 81 | 2thd 175 |
. . . . 5
|
| 83 | 82 | adantr 276 |
. . . 4
|
| 84 | xnegeq 9902 |
. . . . . . . 8
| |
| 85 | xnegmnf 9904 |
. . . . . . . 8
| |
| 86 | 84, 85 | eqtrdi 2245 |
. . . . . . 7
|
| 87 | 86 | adantl 277 |
. . . . . 6
|
| 88 | 87 | oveq2d 5938 |
. . . . 5
|
| 89 | 88 | breq2d 4045 |
. . . 4
|
| 90 | breq1 4036 |
. . . . 5
| |
| 91 | 90 | adantl 277 |
. . . 4
|
| 92 | 83, 89, 91 | 3bitr4d 220 |
. . 3
|
| 93 | 16, 66, 92 | 3jaodan 1317 |
. 2
|
| 94 | 1, 93 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-apti 7994 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-xneg 9847 df-xadd 9848 |
| This theorem is referenced by: ssblps 14661 ssbl 14662 |
| Copyright terms: Public domain | W3C validator |