ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xsubge0 Unicode version

Theorem xsubge0 9778
Description: Extended real version of subge0 8344. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
xsubge0  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
0  <_  ( A +e  -e B )  <->  B  <_  A ) )

Proof of Theorem xsubge0
StepHypRef Expression
1 elxr 9676 . 2  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
2 0xr 7918 . . . . 5  |-  0  e.  RR*
3 rexr 7917 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  RR* )
4 xnegcl 9729 . . . . . . 7  |-  ( B  e.  RR*  ->  -e
B  e.  RR* )
5 xaddcl 9757 . . . . . . 7  |-  ( ( A  e.  RR*  /\  -e
B  e.  RR* )  ->  ( A +e  -e B )  e. 
RR* )
64, 5sylan2 284 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e  -e
B )  e.  RR* )
73, 6sylan2 284 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A +e  -e
B )  e.  RR* )
8 simpr 109 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  B  e.  RR )
9 xleadd1 9772 . . . . 5  |-  ( ( 0  e.  RR*  /\  ( A +e  -e
B )  e.  RR*  /\  B  e.  RR )  ->  ( 0  <_ 
( A +e  -e B )  <->  ( 0 +e B )  <_  ( ( A +e  -e
B ) +e
B ) ) )
102, 7, 8, 9mp3an2i 1324 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
0  <_  ( A +e  -e B )  <->  ( 0 +e B )  <_ 
( ( A +e  -e B ) +e B ) ) )
113adantl 275 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  B  e.  RR* )
12 xaddid2 9760 . . . . . 6  |-  ( B  e.  RR*  ->  ( 0 +e B )  =  B )
1311, 12syl 14 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
0 +e B )  =  B )
14 xnpcan 9769 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e  -e B ) +e B )  =  A )
1513, 14breq12d 3978 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( 0 +e
B )  <_  (
( A +e  -e B ) +e B )  <->  B  <_  A ) )
1610, 15bitrd 187 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
0  <_  ( A +e  -e B )  <->  B  <_  A ) )
17 pnfxr 7924 . . . . . . 7  |- +oo  e.  RR*
18 xrletri3 9702 . . . . . . 7  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  ( A  = +oo  <->  ( A  <_ +oo  /\ +oo  <_  A ) ) )
1917, 18mpan2 422 . . . . . 6  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  ( A  <_ +oo  /\ +oo  <_  A ) ) )
20 rexr 7917 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  RR* )
21 renepnf 7919 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  =/= +oo )
22 xaddmnf1 9745 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
2320, 21, 22syl2anc 409 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A +e -oo )  = -oo )
24 mnflt0 9684 . . . . . . . . . . . . 13  |- -oo  <  0
25 mnfxr 7928 . . . . . . . . . . . . . . 15  |- -oo  e.  RR*
26 xrlenlt 7936 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR*  /\ -oo  e.  RR* )  ->  (
0  <_ -oo  <->  -. -oo  <  0 ) )
272, 25, 26mp2an 423 . . . . . . . . . . . . . 14  |-  ( 0  <_ -oo  <->  -. -oo  <  0
)
2827biimpi 119 . . . . . . . . . . . . 13  |-  ( 0  <_ -oo  ->  -. -oo  <  0 )
2924, 28mt2 630 . . . . . . . . . . . 12  |-  -.  0  <_ -oo
30 breq2 3969 . . . . . . . . . . . 12  |-  ( ( A +e -oo )  = -oo  ->  (
0  <_  ( A +e -oo )  <->  0  <_ -oo ) )
3129, 30mtbiri 665 . . . . . . . . . . 11  |-  ( ( A +e -oo )  = -oo  ->  -.  0  <_  ( A +e -oo ) )
3231pm2.21d 609 . . . . . . . . . 10  |-  ( ( A +e -oo )  = -oo  ->  (
0  <_  ( A +e -oo )  ->  A  = +oo )
)
3323, 32syl 14 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
0  <_  ( A +e -oo )  ->  A  = +oo )
)
3433adantl 275 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  e.  RR )  ->  (
0  <_  ( A +e -oo )  ->  A  = +oo )
)
35 simpr 109 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  A  = +oo )  ->  A  = +oo )
3635a1d 22 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  = +oo )  ->  (
0  <_  ( A +e -oo )  ->  A  = +oo )
)
37 eleq1 2220 . . . . . . . . . . . 12  |-  ( A  = -oo  ->  ( A  e.  RR*  <-> -oo  e.  RR* ) )
3825, 37mpbiri 167 . . . . . . . . . . 11  |-  ( A  = -oo  ->  A  e.  RR* )
39 mnfnepnf 7927 . . . . . . . . . . . 12  |- -oo  =/= +oo
40 neeq1 2340 . . . . . . . . . . . 12  |-  ( A  = -oo  ->  ( A  =/= +oo  <-> -oo  =/= +oo )
)
4139, 40mpbiri 167 . . . . . . . . . . 11  |-  ( A  = -oo  ->  A  =/= +oo )
4238, 41, 22syl2anc 409 . . . . . . . . . 10  |-  ( A  = -oo  ->  ( A +e -oo )  = -oo )
4342, 32syl 14 . . . . . . . . 9  |-  ( A  = -oo  ->  (
0  <_  ( A +e -oo )  ->  A  = +oo )
)
4443adantl 275 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  = -oo )  ->  (
0  <_  ( A +e -oo )  ->  A  = +oo )
)
45 elxr 9676 . . . . . . . . 9  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
4645biimpi 119 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
4734, 36, 44, 46mpjao3dan 1289 . . . . . . 7  |-  ( A  e.  RR*  ->  ( 0  <_  ( A +e -oo )  ->  A  = +oo ) )
48 0le0 8916 . . . . . . . 8  |-  0  <_  0
49 oveq1 5828 . . . . . . . . 9  |-  ( A  = +oo  ->  ( A +e -oo )  =  ( +oo +e -oo ) )
50 pnfaddmnf 9747 . . . . . . . . 9  |-  ( +oo +e -oo )  =  0
5149, 50eqtrdi 2206 . . . . . . . 8  |-  ( A  = +oo  ->  ( A +e -oo )  =  0 )
5248, 51breqtrrid 4002 . . . . . . 7  |-  ( A  = +oo  ->  0  <_  ( A +e -oo ) )
5347, 52impbid1 141 . . . . . 6  |-  ( A  e.  RR*  ->  ( 0  <_  ( A +e -oo )  <->  A  = +oo ) )
54 pnfge 9689 . . . . . . 7  |-  ( A  e.  RR*  ->  A  <_ +oo )
5554biantrurd 303 . . . . . 6  |-  ( A  e.  RR*  ->  ( +oo  <_  A  <->  ( A  <_ +oo  /\ +oo  <_  A
) ) )
5619, 53, 553bitr4d 219 . . . . 5  |-  ( A  e.  RR*  ->  ( 0  <_  ( A +e -oo )  <-> +oo  <_  A
) )
5756adantr 274 . . . 4  |-  ( ( A  e.  RR*  /\  B  = +oo )  ->  (
0  <_  ( A +e -oo )  <-> +oo 
<_  A ) )
58 xnegeq 9724 . . . . . . . 8  |-  ( B  = +oo  ->  -e
B  =  -e +oo )
59 xnegpnf 9725 . . . . . . . 8  |-  -e +oo  = -oo
6058, 59eqtrdi 2206 . . . . . . 7  |-  ( B  = +oo  ->  -e
B  = -oo )
6160adantl 275 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  = +oo )  ->  -e
B  = -oo )
6261oveq2d 5837 . . . . 5  |-  ( ( A  e.  RR*  /\  B  = +oo )  ->  ( A +e  -e
B )  =  ( A +e -oo ) )
6362breq2d 3977 . . . 4  |-  ( ( A  e.  RR*  /\  B  = +oo )  ->  (
0  <_  ( A +e  -e B )  <->  0  <_  ( A +e -oo )
) )
64 breq1 3968 . . . . 5  |-  ( B  = +oo  ->  ( B  <_  A  <-> +oo  <_  A
) )
6564adantl 275 . . . 4  |-  ( ( A  e.  RR*  /\  B  = +oo )  ->  ( B  <_  A  <-> +oo  <_  A
) )
6657, 63, 653bitr4d 219 . . 3  |-  ( ( A  e.  RR*  /\  B  = +oo )  ->  (
0  <_  ( A +e  -e B )  <->  B  <_  A ) )
67 oveq1 5828 . . . . . . . . . 10  |-  ( A  = -oo  ->  ( A +e +oo )  =  ( -oo +e +oo ) )
68 mnfaddpnf 9748 . . . . . . . . . 10  |-  ( -oo +e +oo )  =  0
6967, 68eqtrdi 2206 . . . . . . . . 9  |-  ( A  = -oo  ->  ( A +e +oo )  =  0 )
7069adantl 275 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  = -oo )  ->  ( A +e +oo )  =  0 )
7148, 70breqtrrid 4002 . . . . . . 7  |-  ( ( A  e.  RR*  /\  A  = -oo )  ->  0  <_  ( A +e +oo ) )
72 df-ne 2328 . . . . . . . 8  |-  ( A  =/= -oo  <->  -.  A  = -oo )
73 0lepnf 9690 . . . . . . . . 9  |-  0  <_ +oo
74 xaddpnf1 9743 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
7573, 74breqtrrid 4002 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  0  <_  ( A +e +oo ) )
7672, 75sylan2br 286 . . . . . . 7  |-  ( ( A  e.  RR*  /\  -.  A  = -oo )  ->  0  <_  ( A +e +oo )
)
77 xrmnfdc 9740 . . . . . . . 8  |-  ( A  e.  RR*  -> DECID  A  = -oo )
78 exmiddc 822 . . . . . . . 8  |-  (DECID  A  = -oo  ->  ( A  = -oo  \/  -.  A  = -oo ) )
7977, 78syl 14 . . . . . . 7  |-  ( A  e.  RR*  ->  ( A  = -oo  \/  -.  A  = -oo )
)
8071, 76, 79mpjaodan 788 . . . . . 6  |-  ( A  e.  RR*  ->  0  <_ 
( A +e +oo ) )
81 mnfle 9692 . . . . . 6  |-  ( A  e.  RR*  -> -oo  <_  A )
8280, 812thd 174 . . . . 5  |-  ( A  e.  RR*  ->  ( 0  <_  ( A +e +oo )  <-> -oo  <_  A
) )
8382adantr 274 . . . 4  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  (
0  <_  ( A +e +oo )  <-> -oo 
<_  A ) )
84 xnegeq 9724 . . . . . . . 8  |-  ( B  = -oo  ->  -e
B  =  -e -oo )
85 xnegmnf 9726 . . . . . . . 8  |-  -e -oo  = +oo
8684, 85eqtrdi 2206 . . . . . . 7  |-  ( B  = -oo  ->  -e
B  = +oo )
8786adantl 275 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  -e
B  = +oo )
8887oveq2d 5837 . . . . 5  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( A +e  -e
B )  =  ( A +e +oo ) )
8988breq2d 3977 . . . 4  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  (
0  <_  ( A +e  -e B )  <->  0  <_  ( A +e +oo )
) )
90 breq1 3968 . . . . 5  |-  ( B  = -oo  ->  ( B  <_  A  <-> -oo  <_  A
) )
9190adantl 275 . . . 4  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( B  <_  A  <-> -oo  <_  A
) )
9283, 89, 913bitr4d 219 . . 3  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  (
0  <_  ( A +e  -e B )  <->  B  <_  A ) )
9316, 66, 923jaodan 1288 . 2  |-  ( ( A  e.  RR*  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  -> 
( 0  <_  ( A +e  -e
B )  <->  B  <_  A ) )
941, 93sylan2b 285 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
0  <_  ( A +e  -e B )  <->  B  <_  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    \/ w3o 962    = wceq 1335    e. wcel 2128    =/= wne 2327   class class class wbr 3965  (class class class)co 5821   RRcr 7725   0cc0 7726   +oocpnf 7903   -oocmnf 7904   RR*cxr 7905    < clt 7906    <_ cle 7907    -ecxne 9669   +ecxad 9670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-distr 7830  ax-i2m1 7831  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-apti 7841  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-xneg 9672  df-xadd 9673
This theorem is referenced by:  ssblps  12796  ssbl  12797
  Copyright terms: Public domain W3C validator