Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xsubge0 | Unicode version |
Description: Extended real version of subge0 8394. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xsubge0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9733 | . 2 | |
2 | 0xr 7966 | . . . . 5 | |
3 | rexr 7965 | . . . . . 6 | |
4 | xnegcl 9789 | . . . . . . 7 | |
5 | xaddcl 9817 | . . . . . . 7 | |
6 | 4, 5 | sylan2 284 | . . . . . 6 |
7 | 3, 6 | sylan2 284 | . . . . 5 |
8 | simpr 109 | . . . . 5 | |
9 | xleadd1 9832 | . . . . 5 | |
10 | 2, 7, 8, 9 | mp3an2i 1337 | . . . 4 |
11 | 3 | adantl 275 | . . . . . 6 |
12 | xaddid2 9820 | . . . . . 6 | |
13 | 11, 12 | syl 14 | . . . . 5 |
14 | xnpcan 9829 | . . . . 5 | |
15 | 13, 14 | breq12d 4002 | . . . 4 |
16 | 10, 15 | bitrd 187 | . . 3 |
17 | pnfxr 7972 | . . . . . . 7 | |
18 | xrletri3 9761 | . . . . . . 7 | |
19 | 17, 18 | mpan2 423 | . . . . . 6 |
20 | rexr 7965 | . . . . . . . . . . 11 | |
21 | renepnf 7967 | . . . . . . . . . . 11 | |
22 | xaddmnf1 9805 | . . . . . . . . . . 11 | |
23 | 20, 21, 22 | syl2anc 409 | . . . . . . . . . 10 |
24 | mnflt0 9741 | . . . . . . . . . . . . 13 | |
25 | mnfxr 7976 | . . . . . . . . . . . . . . 15 | |
26 | xrlenlt 7984 | . . . . . . . . . . . . . . 15 | |
27 | 2, 25, 26 | mp2an 424 | . . . . . . . . . . . . . 14 |
28 | 27 | biimpi 119 | . . . . . . . . . . . . 13 |
29 | 24, 28 | mt2 635 | . . . . . . . . . . . 12 |
30 | breq2 3993 | . . . . . . . . . . . 12 | |
31 | 29, 30 | mtbiri 670 | . . . . . . . . . . 11 |
32 | 31 | pm2.21d 614 | . . . . . . . . . 10 |
33 | 23, 32 | syl 14 | . . . . . . . . 9 |
34 | 33 | adantl 275 | . . . . . . . 8 |
35 | simpr 109 | . . . . . . . . 9 | |
36 | 35 | a1d 22 | . . . . . . . 8 |
37 | eleq1 2233 | . . . . . . . . . . . 12 | |
38 | 25, 37 | mpbiri 167 | . . . . . . . . . . 11 |
39 | mnfnepnf 7975 | . . . . . . . . . . . 12 | |
40 | neeq1 2353 | . . . . . . . . . . . 12 | |
41 | 39, 40 | mpbiri 167 | . . . . . . . . . . 11 |
42 | 38, 41, 22 | syl2anc 409 | . . . . . . . . . 10 |
43 | 42, 32 | syl 14 | . . . . . . . . 9 |
44 | 43 | adantl 275 | . . . . . . . 8 |
45 | elxr 9733 | . . . . . . . . 9 | |
46 | 45 | biimpi 119 | . . . . . . . 8 |
47 | 34, 36, 44, 46 | mpjao3dan 1302 | . . . . . . 7 |
48 | 0le0 8967 | . . . . . . . 8 | |
49 | oveq1 5860 | . . . . . . . . 9 | |
50 | pnfaddmnf 9807 | . . . . . . . . 9 | |
51 | 49, 50 | eqtrdi 2219 | . . . . . . . 8 |
52 | 48, 51 | breqtrrid 4027 | . . . . . . 7 |
53 | 47, 52 | impbid1 141 | . . . . . 6 |
54 | pnfge 9746 | . . . . . . 7 | |
55 | 54 | biantrurd 303 | . . . . . 6 |
56 | 19, 53, 55 | 3bitr4d 219 | . . . . 5 |
57 | 56 | adantr 274 | . . . 4 |
58 | xnegeq 9784 | . . . . . . . 8 | |
59 | xnegpnf 9785 | . . . . . . . 8 | |
60 | 58, 59 | eqtrdi 2219 | . . . . . . 7 |
61 | 60 | adantl 275 | . . . . . 6 |
62 | 61 | oveq2d 5869 | . . . . 5 |
63 | 62 | breq2d 4001 | . . . 4 |
64 | breq1 3992 | . . . . 5 | |
65 | 64 | adantl 275 | . . . 4 |
66 | 57, 63, 65 | 3bitr4d 219 | . . 3 |
67 | oveq1 5860 | . . . . . . . . . 10 | |
68 | mnfaddpnf 9808 | . . . . . . . . . 10 | |
69 | 67, 68 | eqtrdi 2219 | . . . . . . . . 9 |
70 | 69 | adantl 275 | . . . . . . . 8 |
71 | 48, 70 | breqtrrid 4027 | . . . . . . 7 |
72 | df-ne 2341 | . . . . . . . 8 | |
73 | 0lepnf 9747 | . . . . . . . . 9 | |
74 | xaddpnf1 9803 | . . . . . . . . 9 | |
75 | 73, 74 | breqtrrid 4027 | . . . . . . . 8 |
76 | 72, 75 | sylan2br 286 | . . . . . . 7 |
77 | xrmnfdc 9800 | . . . . . . . 8 DECID | |
78 | exmiddc 831 | . . . . . . . 8 DECID | |
79 | 77, 78 | syl 14 | . . . . . . 7 |
80 | 71, 76, 79 | mpjaodan 793 | . . . . . 6 |
81 | mnfle 9749 | . . . . . 6 | |
82 | 80, 81 | 2thd 174 | . . . . 5 |
83 | 82 | adantr 274 | . . . 4 |
84 | xnegeq 9784 | . . . . . . . 8 | |
85 | xnegmnf 9786 | . . . . . . . 8 | |
86 | 84, 85 | eqtrdi 2219 | . . . . . . 7 |
87 | 86 | adantl 275 | . . . . . 6 |
88 | 87 | oveq2d 5869 | . . . . 5 |
89 | 88 | breq2d 4001 | . . . 4 |
90 | breq1 3992 | . . . . 5 | |
91 | 90 | adantl 275 | . . . 4 |
92 | 83, 89, 91 | 3bitr4d 219 | . . 3 |
93 | 16, 66, 92 | 3jaodan 1301 | . 2 |
94 | 1, 93 | sylan2b 285 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3o 972 wceq 1348 wcel 2141 wne 2340 class class class wbr 3989 (class class class)co 5853 cr 7773 cc0 7774 cpnf 7951 cmnf 7952 cxr 7953 clt 7954 cle 7955 cxne 9726 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-xneg 9729 df-xadd 9730 |
This theorem is referenced by: ssblps 13219 ssbl 13220 |
Copyright terms: Public domain | W3C validator |