ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zeo Unicode version

Theorem zeo 9347
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
zeo  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )

Proof of Theorem zeo
StepHypRef Expression
1 elz 9244 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 oveq1 5876 . . . . . 6  |-  ( N  =  0  ->  ( N  /  2 )  =  ( 0  /  2
) )
3 2cn 8979 . . . . . . . 8  |-  2  e.  CC
4 2ap0 9001 . . . . . . . 8  |-  2 #  0
53, 4div0api 8692 . . . . . . 7  |-  ( 0  /  2 )  =  0
6 0z 9253 . . . . . . 7  |-  0  e.  ZZ
75, 6eqeltri 2250 . . . . . 6  |-  ( 0  /  2 )  e.  ZZ
82, 7eqeltrdi 2268 . . . . 5  |-  ( N  =  0  ->  ( N  /  2 )  e.  ZZ )
98orcd 733 . . . 4  |-  ( N  =  0  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
109adantl 277 . . 3  |-  ( ( N  e.  RR  /\  N  =  0 )  ->  ( ( N  /  2 )  e.  ZZ  \/  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
11 nneoor 9344 . . . . 5  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN  \/  ( ( N  + 
1 )  /  2
)  e.  NN ) )
12 nnz 9261 . . . . . 6  |-  ( ( N  /  2 )  e.  NN  ->  ( N  /  2 )  e.  ZZ )
13 nnz 9261 . . . . . 6  |-  ( ( ( N  +  1 )  /  2 )  e.  NN  ->  (
( N  +  1 )  /  2 )  e.  ZZ )
1412, 13orim12i 759 . . . . 5  |-  ( ( ( N  /  2
)  e.  NN  \/  ( ( N  + 
1 )  /  2
)  e.  NN )  ->  ( ( N  /  2 )  e.  ZZ  \/  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
1511, 14syl 14 . . . 4  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
1615adantl 277 . . 3  |-  ( ( N  e.  RR  /\  N  e.  NN )  ->  ( ( N  / 
2 )  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
17 nneoor 9344 . . . . 5  |-  ( -u N  e.  NN  ->  ( ( -u N  / 
2 )  e.  NN  \/  ( ( -u N  +  1 )  / 
2 )  e.  NN ) )
1817adantl 277 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( ( -u N  /  2 )  e.  NN  \/  ( (
-u N  +  1 )  /  2 )  e.  NN ) )
19 recn 7935 . . . . . . . . . 10  |-  ( N  e.  RR  ->  N  e.  CC )
20 divnegap 8652 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  -u ( N  /  2 )  =  ( -u N  / 
2 ) )
213, 4, 20mp3an23 1329 . . . . . . . . . 10  |-  ( N  e.  CC  ->  -u ( N  /  2 )  =  ( -u N  / 
2 ) )
2219, 21syl 14 . . . . . . . . 9  |-  ( N  e.  RR  ->  -u ( N  /  2 )  =  ( -u N  / 
2 ) )
2322eleq1d 2246 . . . . . . . 8  |-  ( N  e.  RR  ->  ( -u ( N  /  2
)  e.  NN  <->  ( -u N  /  2 )  e.  NN ) )
24 nnnegz 9245 . . . . . . . 8  |-  ( -u ( N  /  2
)  e.  NN  ->  -u -u ( N  /  2
)  e.  ZZ )
2523, 24syl6bir 164 . . . . . . 7  |-  ( N  e.  RR  ->  (
( -u N  /  2
)  e.  NN  ->  -u -u ( N  /  2
)  e.  ZZ ) )
2619halfcld 9152 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( N  /  2 )  e.  CC )
2726negnegd 8249 . . . . . . . 8  |-  ( N  e.  RR  ->  -u -u ( N  /  2 )  =  ( N  /  2
) )
2827eleq1d 2246 . . . . . . 7  |-  ( N  e.  RR  ->  ( -u -u ( N  /  2
)  e.  ZZ  <->  ( N  /  2 )  e.  ZZ ) )
2925, 28sylibd 149 . . . . . 6  |-  ( N  e.  RR  ->  (
( -u N  /  2
)  e.  NN  ->  ( N  /  2 )  e.  ZZ ) )
30 nnz 9261 . . . . . . 7  |-  ( ( ( -u N  + 
1 )  /  2
)  e.  NN  ->  ( ( -u N  + 
1 )  /  2
)  e.  ZZ )
31 peano2zm 9280 . . . . . . . . . 10  |-  ( ( ( -u N  + 
1 )  /  2
)  e.  ZZ  ->  ( ( ( -u N  +  1 )  / 
2 )  -  1 )  e.  ZZ )
32 ax-1cn 7895 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
3332, 3negsubdi2i 8233 . . . . . . . . . . . . . . . . . 18  |-  -u (
1  -  2 )  =  ( 2  -  1 )
34 2m1e1 9026 . . . . . . . . . . . . . . . . . 18  |-  ( 2  -  1 )  =  1
3533, 34eqtr2i 2199 . . . . . . . . . . . . . . . . 17  |-  1  =  -u ( 1  -  2 )
3632, 3subcli 8223 . . . . . . . . . . . . . . . . . 18  |-  ( 1  -  2 )  e.  CC
3732, 36negcon2i 8230 . . . . . . . . . . . . . . . . 17  |-  ( 1  =  -u ( 1  -  2 )  <->  ( 1  -  2 )  = 
-u 1 )
3835, 37mpbi 145 . . . . . . . . . . . . . . . 16  |-  ( 1  -  2 )  = 
-u 1
3938oveq2i 5880 . . . . . . . . . . . . . . 15  |-  ( -u N  +  ( 1  -  2 ) )  =  ( -u N  +  -u 1 )
40 negcl 8147 . . . . . . . . . . . . . . . 16  |-  ( N  e.  CC  ->  -u N  e.  CC )
41 addsubass 8157 . . . . . . . . . . . . . . . . 17  |-  ( (
-u N  e.  CC  /\  1  e.  CC  /\  2  e.  CC )  ->  ( ( -u N  +  1 )  - 
2 )  =  (
-u N  +  ( 1  -  2 ) ) )
4232, 3, 41mp3an23 1329 . . . . . . . . . . . . . . . 16  |-  ( -u N  e.  CC  ->  ( ( -u N  + 
1 )  -  2 )  =  ( -u N  +  ( 1  -  2 ) ) )
4340, 42syl 14 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  (
( -u N  +  1 )  -  2 )  =  ( -u N  +  ( 1  -  2 ) ) )
44 negdi 8204 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  CC  /\  1  e.  CC )  -> 
-u ( N  + 
1 )  =  (
-u N  +  -u
1 ) )
4532, 44mpan2 425 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  -u ( N  +  1 )  =  ( -u N  +  -u 1 ) )
4639, 43, 453eqtr4a 2236 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  (
( -u N  +  1 )  -  2 )  =  -u ( N  + 
1 ) )
4746oveq1d 5884 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( ( -u N  +  1 )  - 
2 )  /  2
)  =  ( -u ( N  +  1
)  /  2 ) )
48 2div2e1 9040 . . . . . . . . . . . . . . . 16  |-  ( 2  /  2 )  =  1
4948eqcomi 2181 . . . . . . . . . . . . . . 15  |-  1  =  ( 2  / 
2 )
5049oveq2i 5880 . . . . . . . . . . . . . 14  |-  ( ( ( -u N  + 
1 )  /  2
)  -  1 )  =  ( ( (
-u N  +  1 )  /  2 )  -  ( 2  / 
2 ) )
51 peano2cn 8082 . . . . . . . . . . . . . . . 16  |-  ( -u N  e.  CC  ->  (
-u N  +  1 )  e.  CC )
5240, 51syl 14 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  ( -u N  +  1 )  e.  CC )
533, 4pm3.2i 272 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  CC  /\  2 #  0 )
54 divsubdirap 8654 . . . . . . . . . . . . . . . 16  |-  ( ( ( -u N  + 
1 )  e.  CC  /\  2  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( (
-u N  +  1 )  -  2 )  /  2 )  =  ( ( ( -u N  +  1 )  /  2 )  -  ( 2  /  2
) ) )
553, 53, 54mp3an23 1329 . . . . . . . . . . . . . . 15  |-  ( (
-u N  +  1 )  e.  CC  ->  ( ( ( -u N  +  1 )  - 
2 )  /  2
)  =  ( ( ( -u N  + 
1 )  /  2
)  -  ( 2  /  2 ) ) )
5652, 55syl 14 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  (
( ( -u N  +  1 )  - 
2 )  /  2
)  =  ( ( ( -u N  + 
1 )  /  2
)  -  ( 2  /  2 ) ) )
5750, 56eqtr4id 2229 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( ( -u N  +  1 )  / 
2 )  -  1 )  =  ( ( ( -u N  + 
1 )  -  2 )  /  2 ) )
58 peano2cn 8082 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
59 divnegap 8652 . . . . . . . . . . . . . . 15  |-  ( ( ( N  +  1 )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  -u (
( N  +  1 )  /  2 )  =  ( -u ( N  +  1 )  /  2 ) )
603, 4, 59mp3an23 1329 . . . . . . . . . . . . . 14  |-  ( ( N  +  1 )  e.  CC  ->  -u (
( N  +  1 )  /  2 )  =  ( -u ( N  +  1 )  /  2 ) )
6158, 60syl 14 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  -u (
( N  +  1 )  /  2 )  =  ( -u ( N  +  1 )  /  2 ) )
6247, 57, 613eqtr4d 2220 . . . . . . . . . . . 12  |-  ( N  e.  CC  ->  (
( ( -u N  +  1 )  / 
2 )  -  1 )  =  -u (
( N  +  1 )  /  2 ) )
6319, 62syl 14 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  -  1 )  =  -u (
( N  +  1 )  /  2 ) )
6463eleq1d 2246 . . . . . . . . . 10  |-  ( N  e.  RR  ->  (
( ( ( -u N  +  1 )  /  2 )  - 
1 )  e.  ZZ  <->  -u ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
6531, 64imbitrid 154 . . . . . . . . 9  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  e.  ZZ  -> 
-u ( ( N  +  1 )  / 
2 )  e.  ZZ ) )
66 znegcl 9273 . . . . . . . . 9  |-  ( -u ( ( N  + 
1 )  /  2
)  e.  ZZ  ->  -u -u ( ( N  + 
1 )  /  2
)  e.  ZZ )
6765, 66syl6 33 . . . . . . . 8  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  e.  ZZ  -> 
-u -u ( ( N  +  1 )  / 
2 )  e.  ZZ ) )
68 peano2re 8083 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
6968recnd 7976 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  CC )
7069halfcld 9152 . . . . . . . . . 10  |-  ( N  e.  RR  ->  (
( N  +  1 )  /  2 )  e.  CC )
7170negnegd 8249 . . . . . . . . 9  |-  ( N  e.  RR  ->  -u -u (
( N  +  1 )  /  2 )  =  ( ( N  +  1 )  / 
2 ) )
7271eleq1d 2246 . . . . . . . 8  |-  ( N  e.  RR  ->  ( -u -u ( ( N  + 
1 )  /  2
)  e.  ZZ  <->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
7367, 72sylibd 149 . . . . . . 7  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  e.  ZZ  ->  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
7430, 73syl5 32 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  e.  NN  ->  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
7529, 74orim12d 786 . . . . 5  |-  ( N  e.  RR  ->  (
( ( -u N  /  2 )  e.  NN  \/  ( (
-u N  +  1 )  /  2 )  e.  NN )  -> 
( ( N  / 
2 )  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) ) )
7675adantr 276 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( ( (
-u N  /  2
)  e.  NN  \/  ( ( -u N  +  1 )  / 
2 )  e.  NN )  ->  ( ( N  /  2 )  e.  ZZ  \/  ( ( N  +  1 )  /  2 )  e.  ZZ ) ) )
7718, 76mpd 13 . . 3  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( ( N  /  2 )  e.  ZZ  \/  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
7810, 16, 773jaodan 1306 . 2  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
791, 78sylbi 121 1  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    \/ w3o 977    = wceq 1353    e. wcel 2148   class class class wbr 4000  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    - cmin 8118   -ucneg 8119   # cap 8528    / cdiv 8618   NNcn 8908   2c2 8959   ZZcz 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243
This theorem is referenced by:  zeo2  9348  zeo3  11856  mulsucdiv2z  11873  abssinper  13934
  Copyright terms: Public domain W3C validator