ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zeo Unicode version

Theorem zeo 9431
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
zeo  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )

Proof of Theorem zeo
StepHypRef Expression
1 elz 9328 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 oveq1 5929 . . . . . 6  |-  ( N  =  0  ->  ( N  /  2 )  =  ( 0  /  2
) )
3 2cn 9061 . . . . . . . 8  |-  2  e.  CC
4 2ap0 9083 . . . . . . . 8  |-  2 #  0
53, 4div0api 8773 . . . . . . 7  |-  ( 0  /  2 )  =  0
6 0z 9337 . . . . . . 7  |-  0  e.  ZZ
75, 6eqeltri 2269 . . . . . 6  |-  ( 0  /  2 )  e.  ZZ
82, 7eqeltrdi 2287 . . . . 5  |-  ( N  =  0  ->  ( N  /  2 )  e.  ZZ )
98orcd 734 . . . 4  |-  ( N  =  0  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
109adantl 277 . . 3  |-  ( ( N  e.  RR  /\  N  =  0 )  ->  ( ( N  /  2 )  e.  ZZ  \/  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
11 nneoor 9428 . . . . 5  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN  \/  ( ( N  + 
1 )  /  2
)  e.  NN ) )
12 nnz 9345 . . . . . 6  |-  ( ( N  /  2 )  e.  NN  ->  ( N  /  2 )  e.  ZZ )
13 nnz 9345 . . . . . 6  |-  ( ( ( N  +  1 )  /  2 )  e.  NN  ->  (
( N  +  1 )  /  2 )  e.  ZZ )
1412, 13orim12i 760 . . . . 5  |-  ( ( ( N  /  2
)  e.  NN  \/  ( ( N  + 
1 )  /  2
)  e.  NN )  ->  ( ( N  /  2 )  e.  ZZ  \/  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
1511, 14syl 14 . . . 4  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
1615adantl 277 . . 3  |-  ( ( N  e.  RR  /\  N  e.  NN )  ->  ( ( N  / 
2 )  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
17 nneoor 9428 . . . . 5  |-  ( -u N  e.  NN  ->  ( ( -u N  / 
2 )  e.  NN  \/  ( ( -u N  +  1 )  / 
2 )  e.  NN ) )
1817adantl 277 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( ( -u N  /  2 )  e.  NN  \/  ( (
-u N  +  1 )  /  2 )  e.  NN ) )
19 recn 8012 . . . . . . . . . 10  |-  ( N  e.  RR  ->  N  e.  CC )
20 divnegap 8733 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  -u ( N  /  2 )  =  ( -u N  / 
2 ) )
213, 4, 20mp3an23 1340 . . . . . . . . . 10  |-  ( N  e.  CC  ->  -u ( N  /  2 )  =  ( -u N  / 
2 ) )
2219, 21syl 14 . . . . . . . . 9  |-  ( N  e.  RR  ->  -u ( N  /  2 )  =  ( -u N  / 
2 ) )
2322eleq1d 2265 . . . . . . . 8  |-  ( N  e.  RR  ->  ( -u ( N  /  2
)  e.  NN  <->  ( -u N  /  2 )  e.  NN ) )
24 nnnegz 9329 . . . . . . . 8  |-  ( -u ( N  /  2
)  e.  NN  ->  -u -u ( N  /  2
)  e.  ZZ )
2523, 24biimtrrdi 164 . . . . . . 7  |-  ( N  e.  RR  ->  (
( -u N  /  2
)  e.  NN  ->  -u -u ( N  /  2
)  e.  ZZ ) )
2619halfcld 9236 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( N  /  2 )  e.  CC )
2726negnegd 8328 . . . . . . . 8  |-  ( N  e.  RR  ->  -u -u ( N  /  2 )  =  ( N  /  2
) )
2827eleq1d 2265 . . . . . . 7  |-  ( N  e.  RR  ->  ( -u -u ( N  /  2
)  e.  ZZ  <->  ( N  /  2 )  e.  ZZ ) )
2925, 28sylibd 149 . . . . . 6  |-  ( N  e.  RR  ->  (
( -u N  /  2
)  e.  NN  ->  ( N  /  2 )  e.  ZZ ) )
30 nnz 9345 . . . . . . 7  |-  ( ( ( -u N  + 
1 )  /  2
)  e.  NN  ->  ( ( -u N  + 
1 )  /  2
)  e.  ZZ )
31 peano2zm 9364 . . . . . . . . . 10  |-  ( ( ( -u N  + 
1 )  /  2
)  e.  ZZ  ->  ( ( ( -u N  +  1 )  / 
2 )  -  1 )  e.  ZZ )
32 ax-1cn 7972 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
3332, 3negsubdi2i 8312 . . . . . . . . . . . . . . . . . 18  |-  -u (
1  -  2 )  =  ( 2  -  1 )
34 2m1e1 9108 . . . . . . . . . . . . . . . . . 18  |-  ( 2  -  1 )  =  1
3533, 34eqtr2i 2218 . . . . . . . . . . . . . . . . 17  |-  1  =  -u ( 1  -  2 )
3632, 3subcli 8302 . . . . . . . . . . . . . . . . . 18  |-  ( 1  -  2 )  e.  CC
3732, 36negcon2i 8309 . . . . . . . . . . . . . . . . 17  |-  ( 1  =  -u ( 1  -  2 )  <->  ( 1  -  2 )  = 
-u 1 )
3835, 37mpbi 145 . . . . . . . . . . . . . . . 16  |-  ( 1  -  2 )  = 
-u 1
3938oveq2i 5933 . . . . . . . . . . . . . . 15  |-  ( -u N  +  ( 1  -  2 ) )  =  ( -u N  +  -u 1 )
40 negcl 8226 . . . . . . . . . . . . . . . 16  |-  ( N  e.  CC  ->  -u N  e.  CC )
41 addsubass 8236 . . . . . . . . . . . . . . . . 17  |-  ( (
-u N  e.  CC  /\  1  e.  CC  /\  2  e.  CC )  ->  ( ( -u N  +  1 )  - 
2 )  =  (
-u N  +  ( 1  -  2 ) ) )
4232, 3, 41mp3an23 1340 . . . . . . . . . . . . . . . 16  |-  ( -u N  e.  CC  ->  ( ( -u N  + 
1 )  -  2 )  =  ( -u N  +  ( 1  -  2 ) ) )
4340, 42syl 14 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  (
( -u N  +  1 )  -  2 )  =  ( -u N  +  ( 1  -  2 ) ) )
44 negdi 8283 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  CC  /\  1  e.  CC )  -> 
-u ( N  + 
1 )  =  (
-u N  +  -u
1 ) )
4532, 44mpan2 425 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  -u ( N  +  1 )  =  ( -u N  +  -u 1 ) )
4639, 43, 453eqtr4a 2255 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  (
( -u N  +  1 )  -  2 )  =  -u ( N  + 
1 ) )
4746oveq1d 5937 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( ( -u N  +  1 )  - 
2 )  /  2
)  =  ( -u ( N  +  1
)  /  2 ) )
48 2div2e1 9123 . . . . . . . . . . . . . . . 16  |-  ( 2  /  2 )  =  1
4948eqcomi 2200 . . . . . . . . . . . . . . 15  |-  1  =  ( 2  / 
2 )
5049oveq2i 5933 . . . . . . . . . . . . . 14  |-  ( ( ( -u N  + 
1 )  /  2
)  -  1 )  =  ( ( (
-u N  +  1 )  /  2 )  -  ( 2  / 
2 ) )
51 peano2cn 8161 . . . . . . . . . . . . . . . 16  |-  ( -u N  e.  CC  ->  (
-u N  +  1 )  e.  CC )
5240, 51syl 14 . . . . . . . . . . . . . . 15  |-  ( N  e.  CC  ->  ( -u N  +  1 )  e.  CC )
533, 4pm3.2i 272 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  CC  /\  2 #  0 )
54 divsubdirap 8735 . . . . . . . . . . . . . . . 16  |-  ( ( ( -u N  + 
1 )  e.  CC  /\  2  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( (
-u N  +  1 )  -  2 )  /  2 )  =  ( ( ( -u N  +  1 )  /  2 )  -  ( 2  /  2
) ) )
553, 53, 54mp3an23 1340 . . . . . . . . . . . . . . 15  |-  ( (
-u N  +  1 )  e.  CC  ->  ( ( ( -u N  +  1 )  - 
2 )  /  2
)  =  ( ( ( -u N  + 
1 )  /  2
)  -  ( 2  /  2 ) ) )
5652, 55syl 14 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  (
( ( -u N  +  1 )  - 
2 )  /  2
)  =  ( ( ( -u N  + 
1 )  /  2
)  -  ( 2  /  2 ) ) )
5750, 56eqtr4id 2248 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( ( -u N  +  1 )  / 
2 )  -  1 )  =  ( ( ( -u N  + 
1 )  -  2 )  /  2 ) )
58 peano2cn 8161 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
59 divnegap 8733 . . . . . . . . . . . . . . 15  |-  ( ( ( N  +  1 )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  -u (
( N  +  1 )  /  2 )  =  ( -u ( N  +  1 )  /  2 ) )
603, 4, 59mp3an23 1340 . . . . . . . . . . . . . 14  |-  ( ( N  +  1 )  e.  CC  ->  -u (
( N  +  1 )  /  2 )  =  ( -u ( N  +  1 )  /  2 ) )
6158, 60syl 14 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  -u (
( N  +  1 )  /  2 )  =  ( -u ( N  +  1 )  /  2 ) )
6247, 57, 613eqtr4d 2239 . . . . . . . . . . . 12  |-  ( N  e.  CC  ->  (
( ( -u N  +  1 )  / 
2 )  -  1 )  =  -u (
( N  +  1 )  /  2 ) )
6319, 62syl 14 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  -  1 )  =  -u (
( N  +  1 )  /  2 ) )
6463eleq1d 2265 . . . . . . . . . 10  |-  ( N  e.  RR  ->  (
( ( ( -u N  +  1 )  /  2 )  - 
1 )  e.  ZZ  <->  -u ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
6531, 64imbitrid 154 . . . . . . . . 9  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  e.  ZZ  -> 
-u ( ( N  +  1 )  / 
2 )  e.  ZZ ) )
66 znegcl 9357 . . . . . . . . 9  |-  ( -u ( ( N  + 
1 )  /  2
)  e.  ZZ  ->  -u -u ( ( N  + 
1 )  /  2
)  e.  ZZ )
6765, 66syl6 33 . . . . . . . 8  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  e.  ZZ  -> 
-u -u ( ( N  +  1 )  / 
2 )  e.  ZZ ) )
68 peano2re 8162 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
6968recnd 8055 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  CC )
7069halfcld 9236 . . . . . . . . . 10  |-  ( N  e.  RR  ->  (
( N  +  1 )  /  2 )  e.  CC )
7170negnegd 8328 . . . . . . . . 9  |-  ( N  e.  RR  ->  -u -u (
( N  +  1 )  /  2 )  =  ( ( N  +  1 )  / 
2 ) )
7271eleq1d 2265 . . . . . . . 8  |-  ( N  e.  RR  ->  ( -u -u ( ( N  + 
1 )  /  2
)  e.  ZZ  <->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
7367, 72sylibd 149 . . . . . . 7  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  e.  ZZ  ->  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
7430, 73syl5 32 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( -u N  +  1 )  / 
2 )  e.  NN  ->  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
7529, 74orim12d 787 . . . . 5  |-  ( N  e.  RR  ->  (
( ( -u N  /  2 )  e.  NN  \/  ( (
-u N  +  1 )  /  2 )  e.  NN )  -> 
( ( N  / 
2 )  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) ) )
7675adantr 276 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( ( (
-u N  /  2
)  e.  NN  \/  ( ( -u N  +  1 )  / 
2 )  e.  NN )  ->  ( ( N  /  2 )  e.  ZZ  \/  ( ( N  +  1 )  /  2 )  e.  ZZ ) ) )
7718, 76mpd 13 . . 3  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( ( N  /  2 )  e.  ZZ  \/  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
7810, 16, 773jaodan 1317 . 2  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
791, 78sylbi 121 1  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    - cmin 8197   -ucneg 8198   # cap 8608    / cdiv 8699   NNcn 8990   2c2 9041   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327
This theorem is referenced by:  zeo2  9432  zeo3  12033  mulsucdiv2z  12050  abssinper  15082  lgseisenlem1  15311
  Copyright terms: Public domain W3C validator