ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlttr Unicode version

Theorem xrlttr 9917
Description: Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrlttr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem xrlttr
StepHypRef Expression
1 elxr 9898 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9898 . . 3  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
3 elxr 9898 . . . . . . . . 9  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4 lttr 8146 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
543expa 1206 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
65an32s 568 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  e.  RR )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
7 rexr 8118 . . . . . . . . . . . . . . . 16  |-  ( C  e.  RR  ->  C  e.  RR* )
8 pnfnlt 9909 . . . . . . . . . . . . . . . 16  |-  ( C  e.  RR*  ->  -. +oo  <  C )
97, 8syl 14 . . . . . . . . . . . . . . 15  |-  ( C  e.  RR  ->  -. +oo 
<  C )
109adantr 276 . . . . . . . . . . . . . 14  |-  ( ( C  e.  RR  /\  B  = +oo )  ->  -. +oo  <  C
)
11 breq1 4047 . . . . . . . . . . . . . . 15  |-  ( B  = +oo  ->  ( B  <  C  <-> +oo  <  C
) )
1211adantl 277 . . . . . . . . . . . . . 14  |-  ( ( C  e.  RR  /\  B  = +oo )  ->  ( B  <  C  <-> +oo 
<  C ) )
1310, 12mtbird 675 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR  /\  B  = +oo )  ->  -.  B  <  C
)
1413pm2.21d 620 . . . . . . . . . . . 12  |-  ( ( C  e.  RR  /\  B  = +oo )  ->  ( B  <  C  ->  A  <  C ) )
1514adantll 476 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  = +oo )  ->  ( B  < 
C  ->  A  <  C ) )
1615adantld 278 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  = +oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
17 rexr 8118 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  A  e.  RR* )
18 nltmnf 9910 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR*  ->  -.  A  < -oo )
1917, 18syl 14 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  -.  A  < -oo )
2019adantr 276 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  < -oo )
21 breq2 4048 . . . . . . . . . . . . . . 15  |-  ( B  = -oo  ->  ( A  <  B  <->  A  < -oo ) )
2221adantl 277 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  <->  A  < -oo ) )
2320, 22mtbird 675 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  <  B
)
2423pm2.21d 620 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  ->  A  <  C ) )
2524adantlr 477 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  = -oo )  ->  ( A  < 
B  ->  A  <  C ) )
2625adantrd 279 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  = -oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
276, 16, 263jaodan 1319 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  -> 
( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
283, 27sylan2b 287 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  e.  RR* )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
2928an32s 568 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  C  e.  RR )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
30 ltpnf 9902 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  < +oo )
3130adantr 276 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  C  = +oo )  ->  A  < +oo )
32 breq2 4048 . . . . . . . . . . 11  |-  ( C  = +oo  ->  ( A  <  C  <->  A  < +oo ) )
3332adantl 277 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  C  = +oo )  ->  ( A  <  C  <->  A  < +oo ) )
3431, 33mpbird 167 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  = +oo )  ->  A  <  C )
3534adantlr 477 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  C  = +oo )  ->  A  <  C
)
3635a1d 22 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  C  = +oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
37 nltmnf 9910 . . . . . . . . . . . 12  |-  ( B  e.  RR*  ->  -.  B  < -oo )
3837adantr 276 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  -.  B  < -oo )
39 breq2 4048 . . . . . . . . . . . 12  |-  ( C  = -oo  ->  ( B  <  C  <->  B  < -oo ) )
4039adantl 277 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  ( B  <  C  <->  B  < -oo ) )
4138, 40mtbird 675 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  -.  B  <  C )
4241pm2.21d 620 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  ( B  <  C  ->  A  <  C ) )
4342adantld 278 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
4443adantll 476 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  C  = -oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
4529, 36, 443jaodan 1319 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
4645anasss 399 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) ) )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
47 pnfnlt 9909 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  -. +oo  <  B )
4847adantl 277 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -. +oo  <  B )
49 breq1 4047 . . . . . . . . . 10  |-  ( A  = +oo  ->  ( A  <  B  <-> +oo  <  B
) )
5049adantr 276 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  <-> +oo 
<  B ) )
5148, 50mtbird 675 . . . . . . . 8  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -.  A  <  B )
5251pm2.21d 620 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  ->  A  <  C ) )
5352adantrd 279 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
5453adantrr 479 . . . . 5  |-  ( ( A  = +oo  /\  ( B  e.  RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) ) )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
55 mnflt 9905 . . . . . . . . . . 11  |-  ( C  e.  RR  -> -oo  <  C )
5655adantl 277 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  C  e.  RR )  -> -oo  <  C )
57 breq1 4047 . . . . . . . . . . 11  |-  ( A  = -oo  ->  ( A  <  C  <-> -oo  <  C
) )
5857adantr 276 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  C  e.  RR )  ->  ( A  <  C  <-> -oo 
<  C ) )
5956, 58mpbird 167 . . . . . . . . 9  |-  ( ( A  = -oo  /\  C  e.  RR )  ->  A  <  C )
6059a1d 22 . . . . . . . 8  |-  ( ( A  = -oo  /\  C  e.  RR )  ->  ( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
6160adantlr 477 . . . . . . 7  |-  ( ( ( A  = -oo  /\  B  e.  RR* )  /\  C  e.  RR )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
62 mnfltpnf 9907 . . . . . . . . . 10  |- -oo  < +oo
63 breq12 4049 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  C  = +oo )  ->  ( A  <  C  <-> -oo 
< +oo ) )
6462, 63mpbiri 168 . . . . . . . . 9  |-  ( ( A  = -oo  /\  C  = +oo )  ->  A  <  C )
6564a1d 22 . . . . . . . 8  |-  ( ( A  = -oo  /\  C  = +oo )  ->  ( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
6665adantlr 477 . . . . . . 7  |-  ( ( ( A  = -oo  /\  B  e.  RR* )  /\  C  = +oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
6743adantll 476 . . . . . . 7  |-  ( ( ( A  = -oo  /\  B  e.  RR* )  /\  C  = -oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
6861, 66, 673jaodan 1319 . . . . . 6  |-  ( ( ( A  = -oo  /\  B  e.  RR* )  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
6968anasss 399 . . . . 5  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) ) )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
7046, 54, 693jaoian 1318 . . . 4  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  ( B  e. 
RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) ) )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
71703impb 1202 . . 3  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
722, 71syl3an3b 1288 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
731, 72syl3an1b 1286 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 980    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4044   RRcr 7924   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106    < clt 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-lttrn 8039
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112
This theorem is referenced by:  xrltso  9918  xrlttrd  9931  ioo0  10402
  Copyright terms: Public domain W3C validator