ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlttr Unicode version

Theorem xrlttr 9752
Description: Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrlttr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem xrlttr
StepHypRef Expression
1 elxr 9733 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9733 . . 3  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
3 elxr 9733 . . . . . . . . 9  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4 lttr 7993 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
543expa 1198 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
65an32s 563 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  e.  RR )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
7 rexr 7965 . . . . . . . . . . . . . . . 16  |-  ( C  e.  RR  ->  C  e.  RR* )
8 pnfnlt 9744 . . . . . . . . . . . . . . . 16  |-  ( C  e.  RR*  ->  -. +oo  <  C )
97, 8syl 14 . . . . . . . . . . . . . . 15  |-  ( C  e.  RR  ->  -. +oo 
<  C )
109adantr 274 . . . . . . . . . . . . . 14  |-  ( ( C  e.  RR  /\  B  = +oo )  ->  -. +oo  <  C
)
11 breq1 3992 . . . . . . . . . . . . . . 15  |-  ( B  = +oo  ->  ( B  <  C  <-> +oo  <  C
) )
1211adantl 275 . . . . . . . . . . . . . 14  |-  ( ( C  e.  RR  /\  B  = +oo )  ->  ( B  <  C  <-> +oo 
<  C ) )
1310, 12mtbird 668 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR  /\  B  = +oo )  ->  -.  B  <  C
)
1413pm2.21d 614 . . . . . . . . . . . 12  |-  ( ( C  e.  RR  /\  B  = +oo )  ->  ( B  <  C  ->  A  <  C ) )
1514adantll 473 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  = +oo )  ->  ( B  < 
C  ->  A  <  C ) )
1615adantld 276 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  = +oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
17 rexr 7965 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  A  e.  RR* )
18 nltmnf 9745 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR*  ->  -.  A  < -oo )
1917, 18syl 14 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  -.  A  < -oo )
2019adantr 274 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  < -oo )
21 breq2 3993 . . . . . . . . . . . . . . 15  |-  ( B  = -oo  ->  ( A  <  B  <->  A  < -oo ) )
2221adantl 275 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  <->  A  < -oo ) )
2320, 22mtbird 668 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  <  B
)
2423pm2.21d 614 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  ->  A  <  C ) )
2524adantlr 474 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  = -oo )  ->  ( A  < 
B  ->  A  <  C ) )
2625adantrd 277 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  = -oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
276, 16, 263jaodan 1301 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  -> 
( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
283, 27sylan2b 285 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  e.  RR* )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
2928an32s 563 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  C  e.  RR )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
30 ltpnf 9737 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  < +oo )
3130adantr 274 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  C  = +oo )  ->  A  < +oo )
32 breq2 3993 . . . . . . . . . . 11  |-  ( C  = +oo  ->  ( A  <  C  <->  A  < +oo ) )
3332adantl 275 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  C  = +oo )  ->  ( A  <  C  <->  A  < +oo ) )
3431, 33mpbird 166 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  = +oo )  ->  A  <  C )
3534adantlr 474 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  C  = +oo )  ->  A  <  C
)
3635a1d 22 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  C  = +oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
37 nltmnf 9745 . . . . . . . . . . . 12  |-  ( B  e.  RR*  ->  -.  B  < -oo )
3837adantr 274 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  -.  B  < -oo )
39 breq2 3993 . . . . . . . . . . . 12  |-  ( C  = -oo  ->  ( B  <  C  <->  B  < -oo ) )
4039adantl 275 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  ( B  <  C  <->  B  < -oo ) )
4138, 40mtbird 668 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  -.  B  <  C )
4241pm2.21d 614 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  ( B  <  C  ->  A  <  C ) )
4342adantld 276 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
4443adantll 473 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  C  = -oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
4529, 36, 443jaodan 1301 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
4645anasss 397 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) ) )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
47 pnfnlt 9744 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  -. +oo  <  B )
4847adantl 275 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -. +oo  <  B )
49 breq1 3992 . . . . . . . . . 10  |-  ( A  = +oo  ->  ( A  <  B  <-> +oo  <  B
) )
5049adantr 274 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  <-> +oo 
<  B ) )
5148, 50mtbird 668 . . . . . . . 8  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -.  A  <  B )
5251pm2.21d 614 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  ->  A  <  C ) )
5352adantrd 277 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
5453adantrr 476 . . . . 5  |-  ( ( A  = +oo  /\  ( B  e.  RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) ) )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
55 mnflt 9740 . . . . . . . . . . 11  |-  ( C  e.  RR  -> -oo  <  C )
5655adantl 275 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  C  e.  RR )  -> -oo  <  C )
57 breq1 3992 . . . . . . . . . . 11  |-  ( A  = -oo  ->  ( A  <  C  <-> -oo  <  C
) )
5857adantr 274 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  C  e.  RR )  ->  ( A  <  C  <-> -oo 
<  C ) )
5956, 58mpbird 166 . . . . . . . . 9  |-  ( ( A  = -oo  /\  C  e.  RR )  ->  A  <  C )
6059a1d 22 . . . . . . . 8  |-  ( ( A  = -oo  /\  C  e.  RR )  ->  ( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
6160adantlr 474 . . . . . . 7  |-  ( ( ( A  = -oo  /\  B  e.  RR* )  /\  C  e.  RR )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
62 mnfltpnf 9742 . . . . . . . . . 10  |- -oo  < +oo
63 breq12 3994 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  C  = +oo )  ->  ( A  <  C  <-> -oo 
< +oo ) )
6462, 63mpbiri 167 . . . . . . . . 9  |-  ( ( A  = -oo  /\  C  = +oo )  ->  A  <  C )
6564a1d 22 . . . . . . . 8  |-  ( ( A  = -oo  /\  C  = +oo )  ->  ( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
6665adantlr 474 . . . . . . 7  |-  ( ( ( A  = -oo  /\  B  e.  RR* )  /\  C  = +oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
6743adantll 473 . . . . . . 7  |-  ( ( ( A  = -oo  /\  B  e.  RR* )  /\  C  = -oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
6861, 66, 673jaodan 1301 . . . . . 6  |-  ( ( ( A  = -oo  /\  B  e.  RR* )  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
6968anasss 397 . . . . 5  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) ) )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
7046, 54, 693jaoian 1300 . . . 4  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  ( B  e. 
RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) ) )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
71703impb 1194 . . 3  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
722, 71syl3an3b 1271 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
731, 72syl3an1b 1269 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 972    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989   RRcr 7773   +oocpnf 7951   -oocmnf 7952   RR*cxr 7953    < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-lttrn 7888
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959
This theorem is referenced by:  xrltso  9753  xrlttrd  9766  ioo0  10216
  Copyright terms: Public domain W3C validator